Skip to main content

Advertisement

Log in

Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Recent advances in our understanding of how the intestinal microbiome contributes to health and disease have generated great interest in developing strategies for modulating the abundance of microbes and/or their activity to improve overall human health and prevent pathologies such as osteoporosis. Bone is an organ that the gut has long been known to regulate through absorption of calcium, the key bone mineral. However, it is clear that modulation of the gut and its microbiome can affect bone density and strength in a variety of animal models (zebrafish, rodents, chicken) and humans. This is demonstrated in studies ablating the microbiome through antibiotic treatment or using germ-free mouse conditions as well as in studies modulating the microbiome activity and composition through prebiotic and/or probiotic treatment. This review will discuss recent developments in this new and exciting area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12:611–22.

    Article  PubMed  Google Scholar 

  2. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  Google Scholar 

  4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2014.

  6. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10:5512–22.

    Article  CAS  PubMed  Google Scholar 

  7. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Min Res Off J Am Soc Bone Min Res. 2012;27:1357–67. Directly measured the impact of intestinal microbes on bone health and associated parameters. Demonstrated the microbiome leads to lower bone volume fraction when compared to germ-free controls.

    Article  Google Scholar 

  8. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19:1586–97.

    PubMed Central  PubMed  Google Scholar 

  9. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117:122–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci. 2007;1116:360–75.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191:275–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol. 2002;198:220–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104 Suppl 2:S1–63.

    Article  CAS  PubMed  Google Scholar 

  16. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12:303–10.

    Article  CAS  PubMed  Google Scholar 

  17. Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 2006;24:701–14.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas DW, Greer FR. Probiotics and prebiotics in pediatrics. Pediatrics. 2010;126:1217–31.

    Article  PubMed  Google Scholar 

  19. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Acil Y, et al. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr. 2007;137:838S–46.

    CAS  PubMed  Google Scholar 

  20. Chonan O, Watanuki M. Effect of galactooligosaccharides on calcium absorption in rats. J Nutr Sci Vitaminol (Tokyo). 1995;41:95–104.

    Article  CAS  Google Scholar 

  21. Roberfroid MB, Cumps J, Devogelaer JP. Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr. 2002;132:3599–602.

    CAS  PubMed  Google Scholar 

  22. Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci. 2012;77:H88–94.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Vieyra MI, Del Real A, Lopez MG. Agave fructans: their effect on mineral absorption and bone mineral content. J Med Food. 2014;17:1247–55.

    Article  CAS  PubMed  Google Scholar 

  24. Ohta A, Motohashi Y, Sakai K, Hirayama M, Adachi T, Sakuma K. Dietary fructooligosaccharides increase calcium absorption and levels of mucosal calbindin-D9k in the large intestine of gastrectomized rats. Scand J Gastroenterol. 1998;33:1062–8.

    Article  CAS  PubMed  Google Scholar 

  25. Shiga K, Nishimukai M, Tomita F, Hara H. Ingestion of difructose anhydride III, a non-digestible disaccharide, improves postgastrectomy osteopenia in rats. Scand J Gastroenterol. 2006;41:1165–73.

    Article  CAS  PubMed  Google Scholar 

  26. Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney ME. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr. 2004;134:399–402.

    CAS  PubMed  Google Scholar 

  27. Mitamura R, Hara H. Ingestion of difructose anhydride III partially restores calcium absorption impaired by vitamin D and estrogen deficiency in rats. Eur J Nutr. 2006;45:242–9.

    Article  CAS  PubMed  Google Scholar 

  28. van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999;69:544–8.

    PubMed  Google Scholar 

  29. Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87 Suppl 2:S187–91.

    Article  CAS  PubMed  Google Scholar 

  30. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.

    CAS  PubMed  Google Scholar 

  31. Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr. 2007;97:365–72.

    Article  CAS  PubMed  Google Scholar 

  32. van den Heuvel EG, Schoterman MH, Muijs T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr. 2000;130:2938–42.

    PubMed  Google Scholar 

  33. Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J Nutr. 2000;130:1792–5.

    CAS  PubMed  Google Scholar 

  34. Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58:8952–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem. 1995;59:236–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ohta A, Uehara M, Sakai K, Takasaki M, Adlercreutz H, Morohashi T, et al. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr. 2002;132:2048–54.

    CAS  PubMed  Google Scholar 

  37. Ohta A, Ohtsuki M, Uehara M, Hosono A, Hirayama M, Adachi T, et al. Dietary fructooligosaccharides prevent postgastrectomy anemia and osteopenia in rats. J Nutr. 1998;128:485–90.

    CAS  PubMed  Google Scholar 

  38. Scholz-Ahrens KE, Schrezenmeir J. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr. 2007;137:2513S–23.

    CAS  PubMed  Google Scholar 

  39. Ortiz LT, Rodriguez ML, Alzueta C, Rebole A, Trevino J. Effect of inulin on growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens. Br Poult Sci. 2009;50:325–32.

    Article  CAS  PubMed  Google Scholar 

  40. Varley PF, McCarney C, Callan JJ, O’Doherty JV. Effect of dietary mineral level and inulin inclusion on phosphorus, calcium and nitrogen utilisation, intestinal microflora and bone development. J Sci Food Agric. 2010;90:2447–54.

    Article  CAS  PubMed  Google Scholar 

  41. Coxam V. Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr. 2007;137:2527S–33.

    CAS  PubMed  Google Scholar 

  42. Slevin MM, Allsopp PJ, Magee PJ, Bonham MP, Naughton VR, Strain JJ, et al. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women. J Nutr. 2014;144:297–304.

    Article  CAS  PubMed  Google Scholar 

  43. Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C, Davicco MJ, Lebecque P, et al. Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat. Calcif Tissue Int. 2004;75:169–79.

    Article  CAS  PubMed  Google Scholar 

  44. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59:6501–10.

    Article  CAS  PubMed  Google Scholar 

  45. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13:125–30. Nice review discussing the role of prebiotics and their enhancement of calcium absorption in animal and human studies.

    Article  PubMed  Google Scholar 

  46. Yang LC, Wu JB, Lu TJ, Lin WC. The prebiotic effect of Anoectochilus formosanus and its consequences on bone health. British J Nutr. 2012;1–10.

  47. Bryk G, Coronel MZ, Pellegrini G, Mandalunis P, Rio ME, de Portela ML, Zeni SN Effect of a combination GOS/FOS prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr. 2014.

  48. Shiga K, Hara H, Okano G, Ito M, Minami A, Tomita F. Ingestion of difructose anhydride III and voluntary running exercise independently increase femoral and tibial bone mineral density and bone strength with increasing calcium absorption in rats. J Nutr. 2003;133:4207–11.

    CAS  PubMed  Google Scholar 

  49. Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728–35.

    Article  CAS  PubMed  Google Scholar 

  50. Trinidad TP, Wolever TM, Thompson LU. Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. Am J Clin Nutr. 1996;63:574–8.

    CAS  PubMed  Google Scholar 

  51. Langlands SJ, Hopkins MJ, Coleman N, Cummings JH. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut. 2004;53:1610–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. (FAO), F.a.A.O.o.t.U.N. Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition paper. 2001;85.

  53. Abdelqader A, Irshaid R, Al-Fataftah A-R. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop Anim Health Prod. 2013;45:1017–24.

    Article  PubMed  Google Scholar 

  54. Lan GQ, Abdullah N, Jalaludin S, Ho YW. Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult Sci. 2002;81:1522–32.

    Article  CAS  PubMed  Google Scholar 

  55. Mutus R, Kocabagli N, Alp M, Acar N, Eren M, Gezen SS. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci. 2006;85:1621–5.

    Article  CAS  PubMed  Google Scholar 

  56. Sadeghi AA. Bone mineralization of broiler chicks challenged with Salmonella enteritidis fed diet containing probiotic (Bacillus subtilis). Probiot Antimicrob Proteins. 2014;6:136–40.

    Article  CAS  Google Scholar 

  57. Messora MR, Oliveira LFF, Foureaux RC, Taba MJ, Zangeronimo MG, Furlaneto FAC, et al. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis. J Periodontol. 2013;84:1818–26.

    Article  PubMed  Google Scholar 

  58. Foureaux RDC, Messora MR, de Oliveira LFF, Napimoga MH, Pereira ANJ, Ferreira MS, et al. Effects of probiotic therapy on metabolic and inflammatory parameters of rats with ligature-induced periodontitis associated with restraint stress. J Periodontol. 2014;85:975–83.

    Article  CAS  Google Scholar 

  59. Garcia VG, Knoll LR, Longo M, Novaes VCN, Assem NZ, Ervolino E, de Toledo BEC, Theodoro LH Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Period Res. 2015.

  60. Maekawa T, Hajishengallis G. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res. 2014;49:785–91.

    Article  CAS  PubMed  Google Scholar 

  61. Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Yamamoto T, et al. Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutr Res. 2012;32:301–7.

    Article  CAS  PubMed  Google Scholar 

  62. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228:1793–8. Determined that responses to probiotics can be gender dependent. Demonstrated an increase in bone formation in male mice in response to L. reuteri treatment.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30. Identified that use of probiotics can suppress osteoclast activity in ovariectomized mice and prevent bone loss. Demonstrated that probiotics can modify the intestinal microbiome in ovariectomized mice and secrete factors that suppress osteoclastogenesis in vitro.

    Article  CAS  PubMed  Google Scholar 

  64. Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9:e92368.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Chiang SS, Pan TM. Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem. 2011;59:7734–42.

    Article  CAS  PubMed  Google Scholar 

  66. Narva M, Rissanen J, Halleen J, Vapaatalo H, Vaananen K, Korpela R. Effects of bioactive peptide, valyl-prolyl-proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51:65–74.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic L. reuteri. Endocrinology. 2015;EN20151308. Established that probiotics can block bone loss in a type 1 diabetes mouse model. A role for L. reuteri preventing TNF suppression of Wnt signaling in bone is suggested.

  68. Narva M, Collin M, Lamberg-Allardt C, Karkkainen M, Poussa T, Vapaatalo H, et al. Effects of long-term intervention with Lactobacillus helveticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann Nutr Metab. 2004;48:228–34.

    Article  CAS  PubMed  Google Scholar 

  69. Rodrigues FC, Castro ASB, Rodrigues VC, Fernandes SA, Fontes EAF, de Oliveira TT, et al. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food. 2012;15:664–70.

    Article  CAS  PubMed  Google Scholar 

  70. Rovensky J, Svik K, Matha V, Istok R, Ebringer L, Ferencik M, et al. The effects of Enterococcus faecium and selenium on methotrexate treatment in rat adjuvant-induced arthritis. Clin Dev Immunol. 2004;11:267–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor. J Clin Immunol. 2011;31:147–54. Showed a key difference between a broad anti-inflammatory which also suppresses the anti-inflammatory IL-10 cytokine versus a probiotic that suppresses only pro-inflammatory cytokines but enhances IL-10.

    Article  PubMed  Google Scholar 

  72. Salva S, Merino MC, Aguero G, Gruppi A, Alvarez S. Dietary supplementation with probiotics improves hematopoiesis in malnourished mice. PLoS One. 2012;7:e31171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gerbitz A, Schultz M, Wilke A, Linde H-J, Scholmerich J, Andreesen R, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004;103:4365–7.

    Article  CAS  PubMed  Google Scholar 

  74. Avella MA, Place A, Du S-J, Williams E, Silvi S, Zohar Y, et al. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS One. 2012;7:e45572.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Maradonna F, Gioacchini G, Falcinelli S, Bertotto D, Radaelli G, Olivotto I, et al. Probiotic supplementation promotes calcification in Danio rerio larvae: a molecular study. PLoS One. 2013;8:e83155.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from NIH: NCCIH RO1AT007695 and NIDDK R01DK101050.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. McCabe reports grants from BioGaia, during the conduct of the study; in addition, Dr. McCabe has a patent on the selection and use of lactic acid bacteria for bone health (United States Patent Application 20150150917 issued).

Dr. Britton reports grants from BioGaia, during the conduct of the study. In addition, Dr. Britton has a patent on the selection and use of lactic acid bacteria for bone health (United States Patent Application 20150150917).

Dr. Parameswaran has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura McCabe.

Additional information

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCabe, L., Britton, R.A. & Parameswaran, N. Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome. Curr Osteoporos Rep 13, 363–371 (2015). https://doi.org/10.1007/s11914-015-0292-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0292-x

Keywords

Navigation