Skip to main content

Advertisement

Log in

Biomechanical Aspects of the Muscle-Bone Interaction

  • Muscle and Bone (L Bonewald and M Hamrick, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Khosla S. Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci. 2013;68:1226–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O’Keefe RJ, et al. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2013;28:1857–65. Provides a useful summary of the current state of knowledge of the muscle-bone interaction, including areas requiring further exploration.

    Article  PubMed Central  PubMed  Google Scholar 

  4. DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res. 2013;28:1509–18.

    Article  PubMed  Google Scholar 

  5. Karasik D, Cohen-Zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol. 2012;3:303.

    Article  PubMed Central  PubMed  Google Scholar 

  6. DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012;8:674–83.

    Article  PubMed  CAS  Google Scholar 

  7. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65.

    Article  PubMed  CAS  Google Scholar 

  8. Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12:1547–51.

    Article  PubMed  CAS  Google Scholar 

  9. Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc. 2000;32:911–7.

    Article  PubMed  CAS  Google Scholar 

  10. Lu TW, Taylor SJ, O’Connor JJ, Walker PS. Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech. 1997;30:1101–6.

    Article  PubMed  CAS  Google Scholar 

  11. Gross TS, Poliachik SL, Prasad J, Bain SD. The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact. 2010;10:25–34.

    PubMed  CAS  Google Scholar 

  12. Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008;45:283–96.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys. 2008;473:231–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol. 2002;92:1367–77.

    Article  PubMed  CAS  Google Scholar 

  15. Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol. 2013;4:284.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nagaraja MP, Risin D. The current state of bone loss research: data from spaceflight and microgravity simulators. J Cell Biochem. 2013;114:1001–8.

    Article  PubMed  CAS  Google Scholar 

  17. Basso N, Heersche JN. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone. 2006;39:807–14.

    Article  PubMed  CAS  Google Scholar 

  18. Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, et al. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med. 2001;193:399–404.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Smith BJ, King JB, Lucas EA, Akhter MP, Arjmandi BH, Stoecker BJ. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr. 2002;132:190–6.

    PubMed  CAS  Google Scholar 

  20. Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40.

    Article  PubMed  Google Scholar 

  21. Kao I, Drachman DB, Price DL. Botulinum toxin: mechanism of presynaptic blockade. Science. 1976;193:1256–8.

    Article  PubMed  CAS  Google Scholar 

  22. Manske SL, Boyd SK, Zernicke RF. Vertical ground reaction forces diminish in mice after botulinum toxin injection. J Biomech. 2011;44:637–43.

    Article  PubMed  Google Scholar 

  23. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS. Botox induced muscle paralysis rapidly degrades bone. Bone. 2006;38:257–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Aliprantis AO, Stolina M, Kostenuik PJ, Poliachik SL, Warner SE, Bain SD, et al. Transient muscle paralysis degrades bone via rapid osteoclastogenesis. FASEB J. 2012;26:1110–8. Demonstrated the rapidness of osteoclast-mediated bone changes associated with Botox-induced muscle paralysis.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Ellman R, Grasso DJ, van Vliet M, Brooks DJ, Spatz JM, Conlon C, et al. Combined effects of botulinum toxin injection and hind limb unloading on bone and muscle. Calcif Tissue Int. 2013;94:327–37.

    Article  PubMed  CAS  Google Scholar 

  26. Dolly JO, O’Connell MA. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr Opin Pharmacol. 2012;12:100–8.

    Article  PubMed  CAS  Google Scholar 

  27. Manni E, Bagolini B, Pettorossi VE, Errico P. Effect of botulinum toxin on extraocular muscle proprioception. Doc Ophthalmol. 1989;72:189–98.

    Article  PubMed  CAS  Google Scholar 

  28. Poliachik SL, Bain SD, Threet D, Huber P, Gross TS. Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone. 2010;46:18–23.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Allen MR, Hogan HA, Bloomfield SA. Differential bone and muscle recovery following hindlimb unloading in skeletally mature male rats. J Musculoskelet Neuronal Interact. 2006;6:217–25.

    PubMed  CAS  Google Scholar 

  30. Bloomfield SA, Allen MR, Hogan HA, Delp MD. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone. 2002;31:149–57.

    Article  PubMed  CAS  Google Scholar 

  31. Lloyd SA, Lang CH, Zhang Y, Paul EM, Laufenberg LJ, Lewis GS, et al. Interdependence of muscle atrophy and bone loss induced by mechanical unloading. J Bone Miner Res. 2014;29:1118–30.

    Article  PubMed  CAS  Google Scholar 

  32. Manske SL, Boyd SK, Zernicke RF. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone. 2010;46:24–31.

    Article  PubMed  CAS  Google Scholar 

  33. Shirazi-Fard Y, Kupke JS, Bloomfield SA, Hogan HA. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone. 2013;52:433–43.

    Article  PubMed  Google Scholar 

  34. Pickett A, O’Keeffe R, Judge A, Dodd S. The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon. 2008;52:455–64.

    Article  PubMed  CAS  Google Scholar 

  35. Ma J, Elsaidi GA, Smith TL, Walker FO, Tan KH, Martin E, et al. Time course of recovery of juvenile skeletal muscle after botulinum toxin A injection: an animal model study. Am J Phys Med Rehabil. 2004;83:774–80. quiz 81–3.

    Article  PubMed  Google Scholar 

  36. Ausk BJ, Huber P, Srinivasan S, Bain SD, Kwon RY, McNamara EA, et al. Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone. 2013;57:413–22.

    Article  PubMed  Google Scholar 

  37. Jaworski ZF, Duck B, Sekaly G. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat. 1981;133:397–405.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, et al. Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone. 2013;54:98–105. Investigated the skeletal effects of combined tail suspension and Botox-induced muscle paralysis to demonstrate a direct relationship between muscle and bone.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Manske SL, Boyd SK, Zernicke RF. Muscle changes can account for bone loss after botulinum toxin injection. Calcif Tissue Int. 2010;87:541–9.

    Article  PubMed  CAS  Google Scholar 

  40. Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA. Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res. 2010;25:564–74.

    Article  PubMed  Google Scholar 

  41. Macias BR, Swift JM, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA. Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J Appl Physiol. 2012;112:918–25. Demonstrated that simulated resistive training independent of weight bearing forces provided a potent stimulus to bone suggesting a direct role of muscle contractile forces on bone.

    Article  PubMed  CAS  Google Scholar 

  42. Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryol Today. 2010;90:203–13.

    Article  CAS  Google Scholar 

  43. Shwartz Y, Blitz E, Zelzer E. One load to rule them all: mechanical control of the musculoskeletal system in development and aging. Differentiation. 2013;86:104–11.

    Article  PubMed  CAS  Google Scholar 

  44. Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138:3247–59. Modeled intrauterine muscle forces and their role in modulating periosteal bone growth and morphogenesis.

    Article  PubMed  CAS  Google Scholar 

  45. Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, et al. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat. 2007;210:259–71.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. Bone. 2010;46:1275–85.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Rot-Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrimsson B, Hall BK, et al. Myf5−/− :MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol. 2006;216:1–9.

    Article  PubMed  Google Scholar 

  48. Roddy KA, Prendergast PJ, Murphy P. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS ONE. 2011;6:e17526.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res. 2007;25:1154–63.

    Article  PubMed  Google Scholar 

  50. Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S. Muscle loading is necessary for the formation of a functional tendon enthesis. Bone. 2013;55:44–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Turner CH. Muscle-bone interactions, revisited. Bone. 2000;27:339–40.

    Article  PubMed  CAS  Google Scholar 

  52. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.

    Article  PubMed  CAS  Google Scholar 

  53. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10:56–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, et al. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol. 2013;48:898–904. Observed that a myostatin propeptide increased muscle, but not bone, mass suggesting that it may need to be coupled with physical activity in order for the muscle benefits to generate bone benefits.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone. 2014;60:162–71.

    Article  PubMed  CAS  Google Scholar 

  56. Tian X, Jee WS, Li X, Paszty C, Ke HZ. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011;48:197–201.

    Article  PubMed  CAS  Google Scholar 

  57. Widrick JJ, Fuchs R, Maddalozzo GF, Marley K, Snow C. Relative effects of exercise training and alendronate treatment on skeletal muscle function of ovariectomized rats. Menopause. 2007;14:528–34.

    Article  PubMed  Google Scholar 

  58. Robling AG, Burr DB, Turner CH. Skeletal loading in animals. J Musculoskelet Nueronal Interact. 2001;1:249–62.

    CAS  Google Scholar 

  59. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–99.

    Article  PubMed  CAS  Google Scholar 

  60. Gallagher JC, Rapuri PB, Haynatzki G, Detter JR. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J Clin Endocrinol Metab. 2002;87:4914–23.

    Article  PubMed  CAS  Google Scholar 

  61. Karlsson MK, Linden C, Karlsson C, Johnell O, Obrant K, Seeman E. Exercise during growth and bone mineral density and fractures in old age. Lancet. 2000;355:469–70.

    Article  PubMed  CAS  Google Scholar 

  62. Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int. 2004;15:992–7.

    Article  PubMed  CAS  Google Scholar 

  63. Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22:251–9.

    Article  PubMed  Google Scholar 

  64. Warden SJ, Galley MR, Hurd AL, Richard JS, George LA, Guildenbecher EA, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long-term in mice independent of ovariectomy. J Bone Miner Res. 2014;29:1131–40.

    Article  PubMed  Google Scholar 

  65. Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111:5337–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274–80.

    Article  PubMed  CAS  Google Scholar 

  67. Ruff CB, Walker A, Trinkaus E. Postcranial robusticity in Homo. III: ontogeny. Am J Phys Anthropol. 1994;93:35–54.

    Article  PubMed  CAS  Google Scholar 

  68. Zebaze RMD, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.

    Article  PubMed  Google Scholar 

  69. Donahue SW. The role of muscular force and fatigue in stress fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Bota Raton: CRC Press; 2001. p. 131–49.

    Google Scholar 

  70. Scott SH, Winter DA. Internal forces at chronic running injury sites. Med Sci Sports Exerc. 1990;22:357–69.

    Article  PubMed  CAS  Google Scholar 

  71. Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, et al. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188:217–33.

    PubMed  CAS  Google Scholar 

  72. Fyhrie DP, Milgrom C, Hoshaw SJ, Simkin A, Dar S, Drumb D, et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng. 1998;26:660–5.

    Article  PubMed  CAS  Google Scholar 

  73. Milgrom C, Radeva-Petrova DR, Finestone A, Nyska M, Mendelson S, Benjuya N, et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech. 2007;40:845–50.

    Article  PubMed  Google Scholar 

  74. Clansey AC, Hanlon M, Wallace ES, Lake MJ. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med Sci Sports Exerc. 2012;44:1917–23.

    Article  PubMed  Google Scholar 

  75. Armstrong III DW, Rue J-PH, Wilckens JH, Frassica FJ. Stress fracture injury in young military men and women. Bone. 2004;35:806–16.

    Article  PubMed  Google Scholar 

  76. Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.

    Article  PubMed  CAS  Google Scholar 

  77. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes: a 12-month prospective study. Am J Sports Med. 1996;24:810–8.

    Article  PubMed  CAS  Google Scholar 

  78. Hoffman JR, Chapnik L, Shamis A, Givon U, Davidson B. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med. 1999;164:153–6.

    PubMed  CAS  Google Scholar 

  79. Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000;33:317–25.

    Article  PubMed  CAS  Google Scholar 

  80. Huang RP, Rubin CT, McLeod KJ. Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci. 1999;54:B352–7.

    Article  PubMed  CAS  Google Scholar 

  81. Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res. 1984;298:165–74.

    Google Scholar 

  82. Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res. 1998;16:482–9.

    Article  PubMed  CAS  Google Scholar 

  83. Rubin C, Judex S, Qin YX. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing. 2006;35 Suppl 2:ii32–ii6.

    PubMed  Google Scholar 

  84. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Low mechanical signals strengthen long bones. Nature. 2001;412:603–4.

    Article  PubMed  CAS  Google Scholar 

  85. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21:1464–74.

    Article  PubMed  Google Scholar 

  86. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19:343–51.

    Article  PubMed  Google Scholar 

  87. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19:360–9.

    Article  PubMed  Google Scholar 

  88. Wysocki A, Butler M, Shamliyan T, Kane RL. Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med. 2011;155(680–6):W206–13.

    Google Scholar 

  89. Qin YX, Lam H, Ferreri S, Rubin C. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact. 2010;10:12–24.

    PubMed  CAS  Google Scholar 

  90. Lam H, Qin YX. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone. 2008;43:1093–100.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Qin YX, Lam H. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J Biomech. 2009;42:140–5.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Riddle RC, Donahue HJ. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res. 2009;27:143–9.

    Article  PubMed  Google Scholar 

  93. Qin YX, Lin W, Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng. 2002;30:693–702.

    Article  PubMed  Google Scholar 

  94. Kwon RY, Meays DR, Tang WJ, Frangos JA. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res. 2010;25:1798–807.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Hu M, Cheng J, Qin YX. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone. 2012;51:819–25.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Hu M, Serra-Hsu F, Bethel N, Lin L, Ferreri S, Cheng J, et al. Dynamic hydraulic fluid stimulation regulated intramedullary pressure. Bone. 2013;57:137–41.

    Article  PubMed  Google Scholar 

  97. Zhang P, Su M, Liu Y, Hsu A, Yokota H. Knee loading dynamically alters intramedullary pressure in mouse femora. Bone. 2007;40:538–43.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Zhang P, Tanaka SM, Jiang H, Su M, Yokota H. Diaphyseal bone formation in murine tibiae in response to knee loading. J Appl Physiol. 2006;100:1452–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This contribution was made possible by support from the NASA Space Biology Research Programs (NNX13AL25G to S.A.B..) and National Institutes of Health (AR60304 and AR64735 to T.S.G., and AR057740 to S.J.W.)

Compliance with Ethics Guidelines

Conflict of Interest

KG Avin declares no conflicts of interest.

SA Bloomfield has received honoraria from NSBRI.

TS Gross has received consultant fees from Allergan, Inc.

SJ Warden has received consultant fees and travel reimbursement from Eli Lilly and Company.

Human and Animal Rights and Informed Consent

All studies by Bloomfield, Gross, and Warden involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart J. Warden.

Additional information

This article is part of the Topical Collection on Muscle and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avin, K.G., Bloomfield, S.A., Gross, T.S. et al. Biomechanical Aspects of the Muscle-Bone Interaction. Curr Osteoporos Rep 13, 1–8 (2015). https://doi.org/10.1007/s11914-014-0244-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0244-x

Keywords

Navigation