Skip to main content

Advertisement

Log in

Glucocorticoid-Associated Osteoporosis in Chronic Inflammatory Diseases: Epidemiology, Mechanisms, Diagnosis, and Treatment

  • Pediatrics (M Leonard and L Ward, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

An Erratum to this article was published on 08 August 2014

Abstract

Children with chronic illnesses such as Juvenile Idiopathic Arthritis and Crohn's disease, particularly when taking glucocorticoids, are at significant risk for bone fragility. Furthermore, when childhood illness interferes with achieving normal peak bone mass, life-long fracture risk is increased. Osteopenia and osteoporosis, which is increasingly recognized in pediatric chronic disease, likely results from numerous disease- and treatment-related factors, including glucocorticoid exposure. Diagnosing osteoporosis in childhood is complicated by the limitations of current noninvasive techniques such as DXA, which despite its limitations remains the gold standard. The risk:benefit ratio of treatment is confounded by the potential for spontaneous restitution of bone mass deficits and reshaping of previously fractured vertebral bodies. Bisphosphonates have been used to treat secondary osteoporosis in children, but limited experience and potential long-term toxicity warrant caution in routine use. This article reviews the factors that influence loss of normal bone strength and evidence for effective treatments, in particular in patients with gastrointestinal and rheumatologic disorders who are receiving chronic glucocorticoid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51 Suppl 1:S5–17.

    PubMed  Google Scholar 

  2. Peitz J FO, Schoenau E. Quantifying bone disease in pediatric rheumatic patients and its problems. Rheumatol Curr Res. 2012;S2(006). doi:10.4172/2161-1149.S2-006.

  3. Uziel Y, Zifman E, Hashkes PJ. Osteoporosis in children: pediatric and pediatric rheumatology perspective: a review. Pediatr Rheumatol Online J. 2009;7:16.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Brabnikova MK. Secondary osteoporosis in patients with juvenile idiopathic arthritis. J Osteoporos. 2011;2011:569417.

    Google Scholar 

  5. Epstein S, Inzerillo AM, Caminis J, Zaidi M. Disorders associated with acute rapid and severe bone loss. J Bone Min Res. 2003;18(12):2083–94.

    Article  Google Scholar 

  6. Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.

    CAS  PubMed  Google Scholar 

  7. Rubin J, Biskobing DM, Jadhav L, Fan D, Nanes MS, Perkins S, et al. Dexamethasone promotes expression of membrane-bound macrophage colony-stimulating factor in murine osteoblast-like cells. Endocrinology. 1998;139(3):1006–12.

    CAS  PubMed  Google Scholar 

  8. Jia D, O'Brien CA, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology. 2006;147(12):5592–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol. 1997;154(3):397–406.

    Article  CAS  PubMed  Google Scholar 

  10. Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  11. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28.

    Article  CAS  PubMed  Google Scholar 

  12. O'Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145(4):1835–41.

    Article  PubMed  CAS  Google Scholar 

  13. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tsampalieros A, Gupta P, Denburg MR, Shults J, Zemel BS, Mostoufi-Moab S, et al. Glucocorticoid effects on changes in bone mineral density and cortical structure in childhood nephrotic syndrome. J Bone Min Res. 2013;28(3):480–8.

    Article  CAS  Google Scholar 

  15. Burnham JM. Inflammatory diseases and bone health in children. Curr Op Rheumatol. 2012;24(5):548–53.

    Article  Google Scholar 

  16. Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119 Suppl 2:S166–74.

    Article  PubMed  Google Scholar 

  17. Hanaoka BY, Peterson CA, Horbinski C, Crofford LJ. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nature Rev Rheumatol. 2012;8(8):448–57.

    Article  CAS  Google Scholar 

  18. Akki A, Yang H, Gupta A, Chacko VP, Yano T, Leppo MK, et al. Skeletal muscle ATP kinetics are impaired in frail mice. Age (Dordr). 2014;36(1):21–30.

    Article  CAS  Google Scholar 

  19. Cimaz R. Osteoporosis in childhood rheumatic diseases: prevention and therapy. Best Pract Res Rheumatol. 2002;16(3):397–409.

    Article  Google Scholar 

  20. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  21. De Vries F, Bracke M, Leufkens HG, Lammers JW, Cooper C, Van Staa TP. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheumatism. 2007;56(1):208–14.

    Article  PubMed  CAS  Google Scholar 

  22. van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology. 2000;39(12):1383–9.

    Article  PubMed  Google Scholar 

  23. Compston J. Management of glucocorticoid-induced osteoporosis. Nature Rev Rheumatol. 2010;6(2):82–8.

    Article  CAS  Google Scholar 

  24. van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Min Res. 2003;18(5):913–8.

    Article  Google Scholar 

  25. Takayanagi H. New developments in osteoimmunology. Nature Rev Rheumatol. 2012;8(11):684–9. Osteoimmunology studies the relationship between bone and immune cells. Many recent developments have been achieved, and this reviwew nicely summarizes modern discoveries in the field.

    Article  CAS  Google Scholar 

  26. Rabinovich CE. Bone mineral status in juvenile rheumatoid arthritis. J Rheumatol Suppl. 2000;58:34–7.

    CAS  PubMed  Google Scholar 

  27. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.

    CAS  PubMed  Google Scholar 

  28. Varonos S, Ansell BM, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcif Tissue Int. 1987;41(2):75–8.

    Article  CAS  PubMed  Google Scholar 

  29. Long AR, Rouster-Stevens KA. The role of exercise therapy in the management of juvenile idiopathic arthritis. Curr Op Rheumatol. 2010;22(2):213–7.

    Article  Google Scholar 

  30. Malleson PN, Bennett SM, MacKinnon M, Jespersen DK, Coutts KD, Turner SP, et al. Physical fitness and its relationship to other indices of health status in children with chronic arthritis. J Rheumatol. 1996;23(6):1059–65.

    CAS  PubMed  Google Scholar 

  31. Stagi S, Giani T, Simonini G, Falcini F. Thyroid function, autoimmune thyroiditis and coeliac disease in juvenile idiopathic arthritis. Rheumatology. 2005;44(4):517–20.

    Article  CAS  PubMed  Google Scholar 

  32. Lurati A, Cimaz R, Gattinara M, Gerloni V, Teruzzi B, Salmaso A, et al. [Skeletal mineralization in a prepubertal female population affected by juvenile idiopathic arthritis]. Reumatismo. 2008;60(3):224–9.

    CAS  PubMed  Google Scholar 

  33. Nisar MK, Masood F, Cookson P, Sansome A, Ostor AJ. What do we know about juvenile idiopathic arthritis and vitamin D? A systematic literature review and meta-analysis of current evidence. Clin Rheumatol. 2013;32(6):729–34.

    Article  PubMed  Google Scholar 

  34. Ringold S, Wallace CA, Rivara FP. Health-related quality of life, physical function, fatigue, and disease activity in children with established polyarticular juvenile idiopathic arthritis. J Rheumatol. 2009;36(6):1330–6.

    Article  PubMed  Google Scholar 

  35. Schoenau E. From mechanostat theory to development of the "Functional Muscle-Bone-Unit". J Musculoskelet Neuronal Interact. 2005;5(3):232–8.

    CAS  PubMed  Google Scholar 

  36. Felin EM, Prahalad S, Askew EW, Moyer-Mileur LJ. Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis. Arthritis Rheumatism. 2007;56(3):984–94.

    Article  PubMed  Google Scholar 

  37. Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheumatism. 2004;50(4):1277–85.

    Article  PubMed  Google Scholar 

  38. Burnham JM, Shults J, Dubner SE, Sembhi H, Zemel BS, Leonard MB. Bone density, structure, and strength in juvenile idiopathic arthritis: importance of disease severity and muscle deficits. Arthritis Rheumatism. 2008;58(8):2518–27.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Brabnikova Maresova K, Jarosova K, Pavelka K, Stepan JJ. The association between lean mass and bone mineral content in the high disease activity group of adult patients with juvenile idiopathic arthritis. BMC Musculoskelet Disord. 2014;15(1):51. Very recent paper emphasizing the importance of lean mass on bone density.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Alsufyani KA, Ortiz-Alvarez O, Cabral DA, Tucker LB, Petty RE, Nadel H, et al. Bone mineral density in children and adolescents with systemic lupus erythematosus, juvenile dermatomyositis, and systemic vasculitis: relationship to disease duration, cumulative corticosteroid dose, calcium intake, and exercise. J Rheumatology. 2005;32(4):729–33.

    CAS  Google Scholar 

  41. Casella CB, Seguro LP, Takayama L, Medeiros D, Bonfa E, Pereira RM. Juvenile onset systemic lupus erythematosus: a possible role for vitamin D in disease status and bone health. Lupus. 2012;21(12):1335–42.

    Article  CAS  PubMed  Google Scholar 

  42. Compeyrot-Lacassagne S, Tyrrell PN, Atenafu E, Doria AS, Stephens D, Gilday D, et al. Prevalence and etiology of low bone mineral density in juvenile systemic lupus erythematosus. Arthritis Rheumatism. 2007;56(6):1966–73.

    Article  PubMed  Google Scholar 

  43. Regio P, Bonfa E, Takayama L, Pereira R. The influence of lean mass in trabecular and cortical bone in juvenile onset systemic lupus erythematosus. Lupus. 2008;17(9):787–92.

    Article  PubMed  Google Scholar 

  44. Stagi S, Cavalli L, Bertini F, Matucci Cerinic M, Luisa Brandi M, Falcini F. Cross-sectional and longitudinal evaluation of bone mass and quality in children and young adults with juvenile onset systemic lupus erythematosus (JSLE): role of bone mass determinants analyzed by DXA, PQCT and QUS. Lupus. 2014;23(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  45. Trapani S, Civinini R, Ermini M, Paci E, Falcini F. Osteoporosis in juvenile systemic lupus erythematosus: a longitudinal study on the effect of steroids on bone mineral density. Rheumatol Int. 1998;18(2):45–9.

    Article  CAS  PubMed  Google Scholar 

  46. Santiago RA, Silva CA, Caparbo VF, Sallum AM, Pereira RM. Bone mineral apparent density in juvenile dermatomyositis: the role of lean body mass and glucocorticoid use. Scand J Rheumatol. 2008;37(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  47. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64(1):122–31. This article reports on a nice study on vertebral fractures, the most feared complication while on glucocorticoids, on a nationwide basis.

    Article  Google Scholar 

  48. Rouster-Stevens KA, Langman CB, Price HE, Seshadri R, Shore RM, Abbott K, et al. RANKL: osteoprotegerin ratio and bone mineral density in children with untreated juvenile dermatomyositis. Arthritis Rheumatism. 2007;56(3):977–83.

    Article  CAS  PubMed  Google Scholar 

  49. Omori CH, Silva CA, Sallum AM, Rodrigues Pereira RM, Luciade Sa Pinto A, Roschel H, et al. Exercise training in juvenile dermatomyositis. Arthritis Care Res. 2012;64(8):1186–94.

    CAS  Google Scholar 

  50. La Torre F, Martini G, Russo R, Katsicas MM, Corona F, Calcagno G, et al. A preliminary disease severity score for juvenile systemic sclerosis. Arthritis Rheumatism. 2012;64(12):4143–50.

    Article  PubMed  Google Scholar 

  51. Shinjo SK, Bonfa E, de Falco Caparbo V, Pereira RM. Low bone mass in juvenile onset sclerosis systemic: the possible role for 25-hydroxyvitamin D insufficiency. Rheumatol Int. 2011;31(8):1075–80.

    Article  CAS  PubMed  Google Scholar 

  52. Souza RB, Borges CT, Takayama L, Aldrighi JM, Pereira RM. Systemic sclerosis and bone loss: the role of the disease and body composition. Scand J Rheumatol. 2006;35(5):384–7.

    Article  CAS  PubMed  Google Scholar 

  53. Frediani B, Baldi F, Falsetti P, Acciai C, Filippou G, Spreafico A, et al. Clinical determinants of bone mass and bone ultrasonometry in patients with systemic sclerosis. Clin Exp Rheumatol. 2004;22(3):313–8.

    CAS  PubMed  Google Scholar 

  54. Sampaio-Barros PD, Costa-Paiva L, Filardi S, Sachetto Z, Samara AM, Marques-Neto JF. Prognostic factors of low bone mineral density in systemic sclerosis. Clin Exp Rheumatol. 2005;23(2):180–4.

    CAS  PubMed  Google Scholar 

  55. Sylvester FA, Wyzga N, Hyams JS, Davis PM, Lerer T, Vance K, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(1):42–50.

    Article  PubMed  Google Scholar 

  56. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347(6):417–29.

    Article  CAS  PubMed  Google Scholar 

  57. Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nature Rev Drug Discov. 2012;11(3):234–50.

    Article  CAS  Google Scholar 

  58. Hyams JS, Wyzga N, Kreutzer DL, Justinich CJ, Gronowicz GA. Alterations in bone metabolism in children with inflammatory bowel disease: an in vitro study. J Pediat Gastroenterol Nutrit. 1997;24(3):289–95.

    Article  CAS  Google Scholar 

  59. Sylvester FA, Wyzga N, Hyams JS, Gronowicz GA. Effect of Crohn's disease on bone metabolism in vitro: a role for interleukin-6. J Bone Min Res. 2002;17(4):695–702.

    Article  CAS  Google Scholar 

  60. Varghese S, Wyzga N, Griffiths AM, Sylvester FA. Effects of serum from children with newly diagnosed Crohn disease on primary cultures of rat osteoblasts. J Pediat Gastroenterol Nutrit. 2002;35(5):641–8.

    Article  CAS  Google Scholar 

  61. Fewtrell MS, British P, Adolescent BG. Bone densitometry in children assessed by dual x ray absorptiometry: uses and pitfalls. Arch Dis Child. 2003;88(9):795–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Pappa H, Thayu M, Sylvester F, Leonard M, Zemel B, Gordon C. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediat Gastroenterol Nutrit. 2011;53(1):11–25.

    Article  Google Scholar 

  63. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for Black and non-Black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9. In pediatrics normative values are essential in order to perform studies and interpret data. For bone density this is particularly important, this article details reference curves according to age and sex in different ethnic groups.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-Ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42. An essential statement paper related to pediatrics from the International Society that deals with densitometric studies.

  65. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17(2):275–80.

    Article  PubMed  Google Scholar 

  66. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zemel BS. Quantitative computed tomography and computed tomography in children. Curr Osteoporos Rep. 2011;9(4):284–90.

    Article  PubMed  Google Scholar 

  68. Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn's disease. Gastroenterology. 2009;136(1):123–30.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Tsampalieros A, Kalkwarf HJ, Wetzsteon RJ, Shults J, Zemel BS, Foster BJ, et al. Changes in bone structure and the muscle-bone unit in children with chronic kidney disease. Kidney Int. 2013;83(3):495–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Adams JE, Engelke K, Zemel BS, Ward KA. Quantitative computer tomography in children and adolescents: the 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):258–74.

    Article  PubMed  Google Scholar 

  71. Lien G, Flato B, Haugen M, Vinje O, Sorskaar D, Dale K, et al. Frequency of osteopenia in adolescents with early-onset juvenile idiopathic arthritis: a long-term outcome study of one hundred five patients. Arthritis Rheumatism. 2003;48(8):2214–23.

    Article  PubMed  Google Scholar 

  72. Pepmueller PH, Cassidy JT, Allen SH, Hillman LS. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheumatism. 1996;39(5):746–57.

    Article  CAS  PubMed  Google Scholar 

  73. Stagi S, Masi L, Capannini S, Cimaz R, Tonini G, Matucci-Cerinic M, et al. Cross-sectional and longitudinal evaluation of bone mass in children and young adults with juvenile idiopathic arthritis: the role of bone mass determinants in a large cohort of patients. J Rheumatol. 2010;37(9):1935–43.

    Article  PubMed  Google Scholar 

  74. Reed AM, Haugen M, Pachman LM, Langman CB. Repair of osteopenia in children with juvenile rheumatoid arthritis. J Pediatr. 1993;122(5 Pt 1):693–6.

    Article  CAS  PubMed  Google Scholar 

  75. Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Ann Rheum Dis. 2006;65(8):1074–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Valta H, Lahdenne P, Jalanko H, Aalto K, Makitie O. Bone health and growth in glucocorticoid-treated patients with juvenile idiopathic arthritis. J Rheumatol. 2007;34(4):831–6.

    PubMed  Google Scholar 

  77. Nakhla M, Scuccimarri R, Duffy KN, Chedeville G, Campillo S, Duffy CM, et al. Prevalence of vertebral fractures in children with chronic rheumatic diseases at risk for osteopenia. J Pediatr. 2009;154(3):438–43.

    Article  PubMed  Google Scholar 

  78. Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res. 2010;62(4):516–26.

    Article  CAS  Google Scholar 

  79. Cassidy JT, Hillman LS. Abnormalities in skeletal growth in children with juvenile rheumatoid arthritis. Rheum Dis Clin North Am. 1997;23(3):499–522.

    Article  CAS  PubMed  Google Scholar 

  80. Falcini F, Trapani S, Civinini R, Capone A, Ermini M, Bartolozzi G. The primary role of steroids on the osteoporosis in juvenile rheumatoid patients evaluated by dual energy X-ray absorptiometry. J Endocrinol Invest. 1996;19(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  81. Lin YT, Wang CT, Gershwin ME, Chiang BL. The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis. Autoimmun Rev. 2011;10(8):482–9.

    Article  CAS  PubMed  Google Scholar 

  82. Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis Rheumatism. 2000;43(3):531–40.

    Article  CAS  PubMed  Google Scholar 

  83. Stewart WA, Acott PD, Salisbury SR, Lang BA. Bone mineral density in juvenile dermatomyositis: assessment using dual x-ray absorptiometry. Arthritis Rheumatism. 2003;48(8):2294–8.

    Article  CAS  PubMed  Google Scholar 

  84. Gokhale R, Favus MJ, Karrison T, Sutton MM, Rich B, Kirschner BS. Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology. 1998;114(5):902–11.

    Article  CAS  PubMed  Google Scholar 

  85. Jahnsen J, Falch JA, Aadland E, Mowinckel P. Bone mineral density is reduced in patients with Crohn's disease but not in patients with ulcerative colitis: a population based study. Gut. 1997;40(3):313–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Boot AM, Bouquet J, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut. 1998;42(2):188–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Thayu M, Denson LA, Shults J, Zemel BS, Burnham JM, Baldassano RN, et al. Determinants of changes in linear growth and body composition in incident pediatric Crohn's disease. Gastroenterology. 2010;139(2):430–8.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Burnham JM, Shults J, Semeao E, Foster B, Zemel BS, Stallings VA, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Min Res. 2004;19(12):1961–8.

    Article  Google Scholar 

  89. Cowan FJ, Warner JT, Dunstan FD, Evans WD, Gregory JW, Jenkins HR. Inflammatory bowel disease and predisposition to osteopenia. Arch Dis Child. 1997;76(4):325–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133(10):795–9.

    CAS  PubMed  Google Scholar 

  91. Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn's disease. Gastroenterology. 1997;112(5):1710–3.

    Article  CAS  PubMed  Google Scholar 

  92. Lamb EJ, Wong T, Smith DJ, Simpson DE, Coakley AJ, Moniz C, et al. Metabolic bone disease is present at diagnosis in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16(11):1895–902.

    Article  CAS  PubMed  Google Scholar 

  93. Pigot F, Roux C, Chaussade S, Hardelin D, Pelleter O, Du Puy Montbrun T, et al. Low bone mineral density in patients with inflammatory bowel disease. Dig Dis Sci. 1992;37(9):1396–403.

    Article  CAS  PubMed  Google Scholar 

  94. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21(2):331–7.

    Article  CAS  PubMed  Google Scholar 

  95. Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153(4):484–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Semeao EJ, Jawad AF, Stouffer NO, Zemel BS, Piccoli DA, Stallings VA. Risk factors for low bone mineral density in children and young adults with Crohn's disease. J Pediatr. 1999;135(5):593–600.

    Article  CAS  PubMed  Google Scholar 

  97. de Jong DJ, Corstens FH, Mannaerts L, van Rossum LG, Naber AH. Corticosteroid-induced osteoporosis: does it occur in patients with Crohn's disease? Am J Gastroenterol. 2002;97(8):2011–5.

    Article  PubMed  Google Scholar 

  98. Johnston Jr CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992;327(2):82–7.

    Article  PubMed  Google Scholar 

  99. Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012;40(1):13–21.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Ubesie AC, Heubi JE, Kocoshis SA, Henderson CJ, Mezoff AG, Rao MB, et al. Vitamin D deficiency and low bone mineral density in pediatric and young adult intestinal failure. J Pediat Gastroenterol Nutrit. 2013;57(3):372–6.

    Article  CAS  Google Scholar 

  101. van Bodegraven AA, Bravenboer N, Witte BI, Dijkstra G, van der Woude CJ, Stokkers PC, et al. Treatment of bone loss in osteopenic patients with Crohn's disease: a double-blind, randomised trial of oral risedronate 35 mg once weekly or placebo, concomitant with calcium and vitamin D supplementation. Gut. 2013. doi:10.1136/gutjnl-2013-305523.

  102. Karalus J, Chlebna-Sokol D. The clinical efficacy of vitamin D in children with primary low bone mass. Pediatr Endocrinol Diabetes Metab. 2011;17(1):35–40.

    CAS  PubMed  Google Scholar 

  103. Soo J, Malik BA, Turner JM, Persad R, Wine E, Siminoski K, et al. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn's disease. Dig Dis Sci. 2013;58(12):3584–91.

    Article  CAS  PubMed  Google Scholar 

  104. Werkstetter KJ, Schatz SB, Alberer M, Filipiak-Pittroff B, Koletzko S. Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn's disease patients. Ann Nutr Metab. 2013;63(1–2):10–6.

    Article  CAS  PubMed  Google Scholar 

  105. Cundy T. Recent advances in osteogenesis imperfecta. Calcif Tissue Int. 2012;90(6):439–49.

    Article  CAS  PubMed  Google Scholar 

  106. Bianchi ML, Cimaz R, Bardare M, Zulian F, Lepore L, Boncompagni A, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheumatism. 2000;43(9):1960–6. First prospective study on the use of alendronate in children with arthritis and connective tissue diseases.

    Article  CAS  PubMed  Google Scholar 

  107. Guo Z, Wu R, Gong J, Zhu W, Li Y, Li N, et al. The efficacy and safety of bisphosphonates for osteoporosis or osteopenia in Crohn's disease: a meta-analysis. Dig Dis Sci. 2013;58(4):915–22. A meta-analysis on the studies perfomed on bisphosphonateds in Crohn, concluding that routine use cannot be yet recommended.

    Article  CAS  PubMed  Google Scholar 

  108. Bachrach LK, Ward LM. Clinical review 1: bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab. 2009;94(2):400–9.

    Article  CAS  PubMed  Google Scholar 

  109. Ward L, Tricco AC, Phuong P, Cranney A, Barrowman N, Gaboury I, et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev. 2007;4, CD005324.

    PubMed  Google Scholar 

  110. Thornton J, Ashcroft DM, Mughal MZ, Elliott RA, O'Neill TW, Symmons D. Systematic review of effectiveness of bisphosphonates in treatment of low bone mineral density and fragility fractures in juvenile idiopathic arthritis. Arch Dis Child. 2006;91(9):753–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Barbehenn EK, Lurie P, Wolfe SM. Osteosarcoma risk in rats using PTH 1-34. Trends Endocrinol Metab. 2001;12(9):383.

    Article  CAS  PubMed  Google Scholar 

  112. Linglart A, Rothenbuhler A, Gueorgieva I, Lucchini P, Silve C, Bougneres P. Long-term results of continuous subcutaneous recombinant PTH (1-34) infusion in children with refractory hypoparathyroidism. J Clin Endocrinol Metab. 2011;96(11):3308–12. PTH use is feared inthe pediatric age, this paper shows long-term results even if not in children with inflammatory disorders.

    Article  CAS  PubMed  Google Scholar 

  113. Brabnikova Maresova K, Jarosova K, Pavelka K, Stepan JJ. Bone status in adults with early-onset juvenile idiopathic arthritis following 1-year anti-TNFalpha therapy and discontinuation of glucocorticoids. Rheumatol Int. 2013;33(8):2001–7.

    Article  CAS  PubMed  Google Scholar 

  114. Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 year of etanercept treatment in juvenile idiopathic arthritis. Rheumatology. 2005;44(6):777–80.

    Article  CAS  PubMed  Google Scholar 

  115. Thayu M, Leonard MB, Hyams JS, Crandall WV, Kugathasan S, Otley AR, et al. Improvement in biomarkers of bone formation during infliximab therapy in pediatric Crohn's disease: results of the REACH study. Clin Gastroenterol Hepatol. 2008;6(12):1378–84.

    Article  CAS  PubMed  Google Scholar 

  116. Bechtold S, Beyerlein A, Ripperger P, Roeb J, Dalla Pozza R, Hafner R, et al. Total pubertal growth in patients with juvenile idiopathic arthritis treated with growth hormone: analysis of a single center. Growth Horm IGF Res. 2012;22(5):180–5.

    Article  CAS  PubMed  Google Scholar 

  117. Vortia E, Kay M, Wyllie R. The role of growth hormone and insulin-like growth factor-1 in Crohn's disease: implications for therapeutic use of human growth hormone in pediatric patients. Curr Opin Pediatr. 2011;23(5):545–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

E. von Scheven, K. J. Corbin, S. Stagi, and R. Cimaz declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily von Scheven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Scheven, E., Corbin, K.J., Stefano, S. et al. Glucocorticoid-Associated Osteoporosis in Chronic Inflammatory Diseases: Epidemiology, Mechanisms, Diagnosis, and Treatment. Curr Osteoporos Rep 12, 289–299 (2014). https://doi.org/10.1007/s11914-014-0228-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0228-x

Keywords

Navigation