Skip to main content

Advertisement

Log in

The Epidemiology of Fractures in Otherwise Healthy Children

  • Pediatrics (M Leonard and L Ward, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Fractures in otherwise healthy children are important because they are common, impact on daily activity, and may identify those who may have an increased fracture risk as adults. This review covers the descriptive epidemiology of fractures in healthy children (aged 0–16) and provides an overview of what is known about the child-related determinants of fractures, dividing associations into those that are potentially modifiable and those that are not. Maternal-related influences during pregnancy have not been covered, nor have determinants related to the injury such as trauma level, landing surface, injury type, the physical environment, or societal impacts. Age, gender, low bone mass, and exposure to injury are the child-related determinants of fractures with the highest quality research showing a convincing association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Landin L. Fracture patterns in children. Acta Orthop Scand. 1983;54 Suppl 202:1–109.

    Article  Google Scholar 

  2. Moustaki M. Cross country variation of fractures in the childhood population. Is the origin biological or ‘accidental’. Inj Prev. 2001;7:77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kopjar B, Wickizer TM. Fractures among children: incidence and impact on daily activities. Inj Prev. 1998;4:194–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cooper C, Walker-Bone K, Arden N, Dennison E. Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatology. 2000;39:1312–5.

    Article  CAS  PubMed  Google Scholar 

  5. Lyons RA, Delahunty AM, Kraus D, et al. Children's fractures: a population based study. Inj Prev. 1999;5:129–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jones IE, Williams SM, Dow N, Goulding A. How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedim Multidisciplinary Health and Development Study. Osteoporos Int. 2002;13:990–5.

    Article  CAS  PubMed  Google Scholar 

  7. Oskam J, Kingma J, Klasen HJ. Fracture of the distal forearm: epidemiological developments in the period 1971 to 1995. Injury. 1998;29(5):353–5.

    Article  CAS  PubMed  Google Scholar 

  8. Mayranpaa MK, Makitie O, Kallio PE. Decreasing incidence and changing pattern of childhood fractures: a population-based study. J Bone Miner Res. 2010;25(12):2752–9. The most recent and comprehensive population-based study showing the changing pattern of childhood fractures.

    Article  PubMed  Google Scholar 

  9. Bridgman S, Wilson R. Epidemiology of femoral fractures in children in the West Midlands region of England 1991 to 2001. J Bone Joint Surg (Br). 2004;86-B(8):1152–7.

    Article  Google Scholar 

  10. Emami A, Mjoberg B, Ragnarsson B, Larsson S. Changing epidemiology of tibial shaft fractures. Acta Orthop Scand. 1996;67(6):557–61.

    Article  CAS  PubMed  Google Scholar 

  11. Wren T, Shepherd J, Kalkwarf HJ, et al. Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr. 2012;161(6):1035–40. An important prospective study of 1470 children aged 6–17 followed-up for up to 6 years with excellent ethnicity data plus many other variables including activity and body fat allowing identification of independent predictors of fracture risk.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mayranpaa MK, Viljakainen HT, Toiviainen-Salo S, Kallio PE, Makitie O. Impaired bone health and asymptomatic vertebral compressions in fracture-prone children: a case-control study. J Bone Miner Res. 2012;27(6):1413–24.

    Article  PubMed  Google Scholar 

  13. Cooper C, Atkinson EJ, O’Fallen WM, Melton III LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota. J Bone Miner Res. 1992;7:221–7.

    Article  CAS  PubMed  Google Scholar 

  14. Puisto V, Kaariainen S, Impinen A, Parkkila T, Vartiainen E, Jalanko T, et al. Incidence of spinal and spinal cord injuries and their surgical treatment in children and adolescents. Spine. 2009;35(1):104–7.

    Article  Google Scholar 

  15. Cooper C, Dennison EM, Leufkens HGM, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the GP Research Database. J Bone Miner Res. 2004;19(12):1976–81.

    Article  PubMed  Google Scholar 

  16. Henrikson B. Isolated fracture of the proximal end of the radius in children: epidemiology, treatment and prognosis. Acta Orthop Scand. 1969;40:246–60.

    Article  CAS  PubMed  Google Scholar 

  17. Khosla S, Melton III LJ, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290(11):1479–85.

    Article  CAS  PubMed  Google Scholar 

  18. Kramhoft M, Bodtker S. Epidemiology of distal forearm fractures in Danish children. Acta Orthop Scand. 1988;59(5):557–9.

    Article  CAS  PubMed  Google Scholar 

  19. Stark AD, Bennet GC, Stone DH, Chishti P. Association between childhood fractures and poverty: population based study. BMJ. 2002;324:457.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lyons RA, Delahunty AM, Heaven M, McCabe M, Allen H, Nash P. Incidence of childhood fractures in affluent and deprived areas: population based study. BMJ. 2000;320:149.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hinton RY, Lincoln A, Crockett MM, Sponseller P, Smith G. Fractures of the femoral shaft in children. J Bone Joint Surg. 1999;81A(4):500–9.

    Google Scholar 

  22. Rowe R, Maughan B, Goodman R. Childhood psychiatric disorder and unintentional injury: findings from a national cohort study. Pediatr Psychol. 2004;29(2):119–30.

    Article  Google Scholar 

  23. Thandrayen K, Norris S, Micklesfield L, Pettifor JM. Heterogeneity of fracture pathogenesis in urban South African children: the birth to twenty cohort. J Bone Miner Res. 2011;26(12):2834–42.

    Article  PubMed  Google Scholar 

  24. Lyons RA, Sellstrom E, Delahunty AM, Loeb M, Varilo S. Incidence and causes of fractures in European districts. Arch Dis Child. 2000;82:452–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Suuriniemi M, Mahonen A, Kovanen V, Alen M, Cheng S. Relation of PuvII site polymorphism in the COL1A2 gene to the risk of fractures in prepubertal Finnish girls. Physiol Genomics. 2003;14:217–24.

    CAS  PubMed  Google Scholar 

  26. Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117(2):e291–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ma DQ, Jones G. The association between BMD, metacarpal morphometry and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab. 2003;88:1486–91.

    Article  CAS  PubMed  Google Scholar 

  28. Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21(9):1489–95.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ferrari S, Chevalley T, Bonjour JP, Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006;21(4):501–7.

    Article  PubMed  Google Scholar 

  30. Flynn J, Foley S, Jones G. Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty?: an eight-year prospective study. J Bone Miner Res. 2007;22(9):1463–7.

    Article  PubMed  Google Scholar 

  31. Cheng S, Xu L, Nicholson PH, et al. Low volumetric BMD is linked to upper-limb fracture in pubertal girls and persists into adulthood: a seven-year cohort study. Bone. 2009;45(3):480–6.

    Article  PubMed  Google Scholar 

  32. Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R. Fractures during childhood and adolescence in healthy boys: relation with bone mass, microstructure, and strength. J Clin Endocrinol Metab. 2011;96(10):3134–42.

    Article  CAS  PubMed  Google Scholar 

  33. Jones G, Boon P. Which bone mass measures discriminate adolescents who have fractured from those who have not? Osteoporos Int. 2008;19(2):251–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22(2):607–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jones IE, Williams SM, Goulding A. Associations of birth weight and length, childhood size, and smoking with bone fractures during growth: evidence from a birth cohort study. Am J Epidemiol. 2004;159(4):343–50.

    Article  PubMed  Google Scholar 

  36. Clark EM, Ness AR, Tobias JH. Vigorous physical activity increases fracture risk in children irrespective of bone mass: a prospective study of the independent risk factors for fractures in healthy children. J Bone Miner Res. 2008;23:1012–22.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kim J, Hsieh MH, Soni B, Zayzafoon M, Allison D. Childhood obesity as a risk factor for bone fracture: a mechanistic study. Obesity. 2013;21(7):1459–66. One of a small number of studies attempting to identify the mechanism behind any association between obesity and bone fracture.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Field AE, Gordon CM, Pierce L, Ramappa A, Kocher M. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch Pediatr Adolesc Med. 2011;165(8):723–8.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Detter F, Rosengren B, Dencker M, Nilsson J, Karlsson M. A 5-year exercise programme in pre- and peri-pubertal children improves bone mass and bone size without affecting fracture risk. Calcif Tissue Int. 2013;92:385–93. A high quality RCT of exercise in childhood, reassuringly reporting no increase in fracture risk.

    Article  CAS  PubMed  Google Scholar 

  40. Ma DQ, Jones G. Soft drink and milk consumption, physical activity, bone mass and upper limb fractures in children: a population-based case-control study. Calcif Tissue Int. 2004;75:286–91.

    Article  CAS  PubMed  Google Scholar 

  41. Ma DQ, Jones G. TV, computer and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res. 2003;18(11):1970–7.

    Article  PubMed  Google Scholar 

  42. Marshall SJ, Biddle SJH, Gorely T, Cameron N, Murdey I. Relationships between media use, body fatness and physical activity in children and youth: a meta-analysis. Int J Obes. 2004;28(10):1238–46.

    Article  CAS  Google Scholar 

  43. Clark EM, Tobias JH, Murray L, Boreham C. Children with low muscle strength are at an increased risk of fracture with exposure to exercise. J Musculoskelet Nueronal Interact. 2011;11(2):196–202.

    CAS  Google Scholar 

  44. Chlebna-Sokol D, Blaszczuk A, Trafalska E, Grzybowski A. Bone mineralization in children with skeletal system abnormalities in relation to dietary intake of some nutrients. Przegl Lek. 2003;60 Suppl 6:60–4.

    PubMed  Google Scholar 

  45. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  46. Konstantynowicz J, Nguyen TV, Kaczmarski M, Jamiolkowski J, Piotrowska-Jastrzebska J, Seeman E. Fractures during growth: potential role of a milk-free diet. Osteoporos Int. 2007;18(12):1601–7.

    Article  CAS  PubMed  Google Scholar 

  47. Goulding A, Rockell JE, Black RE, Grant AM, Jones IE, Williams SM. Children who avoid drinking cow's milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004;104:250–3.

    Article  PubMed  Google Scholar 

  48. Petridou E, Karpathios T, Dessypris N, Simou E, Trichopoulos D. The role of dairy products and non- alcoholic beverages in bone fractures among school age children. Scand J Soc Med. 1997;25(2):119–25.

    CAS  PubMed  Google Scholar 

  49. Salinas C, Segura E, Alonson J, Lopez V, Galvez A. Decreased BMD and other risk factors in prepubertal children with fracture of the distal forearm. An Pediatr. 2009;71(5):383–90.

    Article  Google Scholar 

  50. Committee on N. Calcium requirements of infants, children, and adolescents. Pediatrics. 1999;104(5):1152–7.

    Article  Google Scholar 

  51. Ryan L, Teach S, Singer S, et al. BMD and vitamin D status among African American children with forearm fractures. Pediatrics. 2012;130(3):e553–60.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138:569–70.

    CAS  PubMed  Google Scholar 

  53. Cook SD, Harding AF, Morgan EL, et al. Association of BMD and pediatric fractures. J Pediatr Orthop. 1987;7:424–7.

    Article  CAS  PubMed  Google Scholar 

  54. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. BMD in girls with forearm fractures. J Bone Miner Res. 1998;13(1):143–8.

    Article  CAS  PubMed  Google Scholar 

  55. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16(7):1337–42.

    Article  CAS  PubMed  Google Scholar 

  56. Ma DQ, Jones G. Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health. 2002;38:497–500.

    Article  CAS  PubMed  Google Scholar 

  57. Schalamon J, Singer G, Schwantzer G, Nietosvaara Y. Quantitative ultrasound assessment in children with fractures. J Bone Miner Res. 2004;19(8):1276–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

E. M. Clark has been funded by grants from the Wellcome Trust.

Compliance with Ethics Guidelines

Conflict of Interest

E. M. Clark declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma M. Clark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, E.M. The Epidemiology of Fractures in Otherwise Healthy Children. Curr Osteoporos Rep 12, 272–278 (2014). https://doi.org/10.1007/s11914-014-0227-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0227-y

Keywords

Navigation