Skip to main content

Advertisement

Log in

The osteogenic-angiogenic interface: Novel insights into the biology of bone formation and fracture repair

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone never forms without vascular interactions. Although this is a very simple and obvious statement, the biological, clinical, and pharmacologic implications are incompletely appreciated. The vasculature is not only the conduit for nutrient-metabolite exchange and the rate-limiting “point-of-reference” for Haversian bone formation, but also provides the sustentacular niche for the self-renewing osteoprogenitor. This past year, significant advances have been made in our understanding of the osteogenic-angiogenic interface that are immediately germane to osteoporosis disease biology and fracture management. The critical contributions of the osteoblast oxygen-sensing machinery, paracrine vascular endothelial growth factor and placental growth factor signaling, fracture-mobilized circulating osteoprogenitors, and the osteogenic CD146(+) marrow sinusoid stem cell have been recently discovered. This brief review recounts these revelations, highlighting the potential impact to human bone health and fracture repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Woolf AD, Pfleger B: Burden of major musculoskeletal conditions. Bull World Health Organ 2003, 81:646–656.

    PubMed  Google Scholar 

  2. Zelzer E, McLean W, Ng YS, et al.: Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 2002, 129:1893–1904.

    PubMed  CAS  Google Scholar 

  3. Carvalho RS, Einhorn TA, Lehmann W, et al.: The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 2004, 34:849–861.

    Article  PubMed  CAS  Google Scholar 

  4. Luo D, Luo Y, He Y, et al.: Differential functions of tumor necrosis factor receptor 1 and 2 signaling in ischemia-mediated arteriogenesis and angiogenesis. Am J Pathol 2006, 169:1886–1898.

    Article  PubMed  CAS  Google Scholar 

  5. He Y, Luo Y, Tang S, et al.: Critical function of Bmx/Etk in ischemia-mediated arteriogenesis and angiogenesis. J Clin Invest 2006, 116:2344–2355.

    PubMed  CAS  Google Scholar 

  6. Wang Y, Wan C, Deng L, et al.: The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007, 117:1616–1626.

    Article  PubMed  CAS  Google Scholar 

  7. Wan C, Gilbert SR, Wang Y, et al.: Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A 2008, 105:686–691.

    Article  PubMed  CAS  Google Scholar 

  8. Zelzer E, Mamluk R, Ferrara N, et al.: VEGFA is necessary for chondrocyte survival during bone development. Development 2004, 131:2161–2171.

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi H, Shibuya M: The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 2005, 109:227–241.

    CAS  Google Scholar 

  10. Zelzer E, Glotzer DJ, Hartmann C, et al.: Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 2001, 106:97–106.

    Article  PubMed  CAS  Google Scholar 

  11. Semenza GL, Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992, 12:5447–5454.

    PubMed  CAS  Google Scholar 

  12. Forsythe JA, Jiang BH, Iyer NV, et al.: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996, 16:4604–4613.

    PubMed  CAS  Google Scholar 

  13. Semenza GL: HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 2001, 107:1–3.

    Article  PubMed  CAS  Google Scholar 

  14. Jaakkola P, Mole DR, Tian YM, et al.: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001, 292:468–472.

    Article  PubMed  CAS  Google Scholar 

  15. Towler DA: Vascular biology and bone formation: hints from HIF. J Clin Invest 2007, 117:1477–1480.

    Article  PubMed  CAS  Google Scholar 

  16. Raaymakers EL: Fractures of the femoral neck: a review and personal statement. Acta Chir Orthop Traumatol Cech 2006, 73:45–59.

    PubMed  Google Scholar 

  17. Thompson RC Jr, Clohisy DR: Deformity following fracture in diabetic neuropathic osteoarthropathy. Operative management of adults who have type-I diabetes. J Bone Joint Surg Am 1993, 75:1765–1773.

    PubMed  Google Scholar 

  18. Ang E, Black C, Irish J, et al.: Reconstructive options in the treatment of osteoradionecrosis of the craniomaxillofacial skeleton. Br J Plast Surg 2003, 56:92–99.

    Article  PubMed  CAS  Google Scholar 

  19. Kalra S, McBryde CW, Lawrence T: Intracapsular hip fractures in end-stage renal failure. Injury 2006, 37:175–184.

    Article  PubMed  CAS  Google Scholar 

  20. Damany DS, Parker MJ, Chojnowski A: Complications after intracapsular hip fractures in young adults. A meta-analysis of 18 published studies involving 564 fractures. Injury 2005, 36:131–141.

    PubMed  CAS  Google Scholar 

  21. Khosla S, Burr D, Cauley J, et al.: Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2007, 22:1479–1491.

    Article  PubMed  Google Scholar 

  22. Aragones J, Schneider M, Van Geyte K, et al.: Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 2008, 40:170–180.

    Article  PubMed  CAS  Google Scholar 

  23. Jorgensen NR, Schwarz P, Holme I, et al.: The prevalence of osteoporosis in patients with chronic obstructive pulmonary disease: a cross sectional study. Respir Med 2007, 101:177–185.

    Article  PubMed  CAS  Google Scholar 

  24. Fei F, Linnosier M, Laroche N, et al.: Chronic hypoxiainduced bone angiogenesis and reduction of bone marrow adipogenesis leads to bone loss in adult rats [abstract]. J Bone Miner Res 2006, 21:SA342.

    Google Scholar 

  25. Hauge EM, Qvesel D, Eriksen EF, et al.: Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 2001, 16:1575–1582.

    Article  PubMed  CAS  Google Scholar 

  26. Eriksen EF, Eghbali-Fatourechi GZ, Khosla S: Remodeling and vascular spaces in bone. J Bone Miner Res 2007, 22:1–6.

    Article  PubMed  CAS  Google Scholar 

  27. Parfitt AM: The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res 2001, 16:1583–1585.

    Article  PubMed  CAS  Google Scholar 

  28. Sacchetti B, Funari A, Michienzi S, et al.: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131:324–336.

    Article  PubMed  CAS  Google Scholar 

  29. Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003, 18:696–704.

    Article  PubMed  Google Scholar 

  30. Doherty MJ, Ashton BA, Walsh S, et al.: Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998, 13:828–838.

    Article  PubMed  CAS  Google Scholar 

  31. Kolf CM, Cho E, Tuan RS: Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007, 9:204.

    Article  PubMed  CAS  Google Scholar 

  32. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, et al.: Circulating osteoblast-lineage cells in humans. N Engl J Med 2005, 352:1959–1966.

    Article  PubMed  CAS  Google Scholar 

  33. Gazit D, Karmish M, Holzman L, Bab I: Regenerating marrow induces systemic increase in osteo-and chondrogenesis. Endocrinology 1990, 126:2607–2613.

    Article  PubMed  CAS  Google Scholar 

  34. Eghbali-Fatourechi GZ, Modder UI, Charatcharoenwitthaya N, et al.: Characterization of circulating osteoblast lineage cells in humans. Bone 2007, 40:1370–1377.

    Article  PubMed  CAS  Google Scholar 

  35. Traktuev DO, Merfeld-Clauss S, Li J, et al.: A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008, 102:77–85.

    Article  PubMed  CAS  Google Scholar 

  36. Matsumoto T, Kawamoto A, Kuroda R, et al.: Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol 2006, 169:1440–1457.

    Article  PubMed  CAS  Google Scholar 

  37. Matsumoto T, Mifune Y, Kawamoto A, et al.: Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol 2008, 215:234–242.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang H, Bradley A: Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996, 122:2977–2986.

    PubMed  CAS  Google Scholar 

  39. Tsuji K, Bandyopadhyay A, Harfe BD, et al.: BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006, 38:1424–1429.

    Article  PubMed  CAS  Google Scholar 

  40. Maes C, Coenegrachts L, Stockmans I, et al.: Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J Clin Invest 2006, 116:1230–1242.

    Article  PubMed  CAS  Google Scholar 

  41. Marrony S, Bassilana F, Seuwen K, Keller H: Bone morphogenetic protein 2 induces placental growth factor in mesenchymal stem cells. Bone 2003, 33:426–433.

    Article  PubMed  CAS  Google Scholar 

  42. Raida M, Heymann AC, Gunther C, Niederwieser D: Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med 2006, 18:735–739.

    PubMed  CAS  Google Scholar 

  43. Peng H, Usas A, Olshanski A, et al.: VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005, 20:2017–2027.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwight A. Towler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Towler, D.A. The osteogenic-angiogenic interface: Novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep 6, 67–71 (2008). https://doi.org/10.1007/s11914-008-0012-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-008-0012-x

Keywords

Navigation