Skip to main content

Advertisement

Log in

Incorporation of Prognostic and Predictive Factors Into Glioma Clinical Trials

  • Neuro-oncology (MR Gilbert, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Treatment of brain tumors is increasingly informed by biomarkers that predict patient prognosis and response to therapy. While this progress represents a great opportunity for the field of neuro-oncology, it also presents significant challenges. Biomarkers are not straightforward to identify, and previously used clinical trial paradigms are poorly suited to the task of identifying treatments effective only in selected subsets of patients. Unless investigators adapt new tools and procedures that better account for the biological diversity of gliomas, future clinical trials run the dual risk of missing important treatment effects and exposing patients to interventions destined to prove ineffective for their tumors. In this article, we will review the progress made in the past decade with respect to biomarkers in neuro-oncology, address barriers to ongoing progress, and discuss clinical trial designs that may prove useful in moving neuro-oncology fully into the era of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363:301–4.

    Article  PubMed  CAS  Google Scholar 

  2. Conley BA, Taube SE. Prognostic and predictive markers in cancer. Dis Markers. 2004;20:35–43.

    PubMed  CAS  Google Scholar 

  3. Romond EH, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.

    Article  PubMed  CAS  Google Scholar 

  4. McShane LM, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–4.

    Article  PubMed  CAS  Google Scholar 

  5. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  PubMed  CAS  Google Scholar 

  6. Hegi ME, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  PubMed  CAS  Google Scholar 

  7. Stupp R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  PubMed  CAS  Google Scholar 

  8. Ahluwalia MS. American society of clinical oncology 2011 CNS tumors update. Expert Rev Anticancer Ther. 2011;11:1495–7.

    Article  PubMed  Google Scholar 

  9. Malmstrom A, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the nordic randomised, phase 3 trial. Lancet Oncol. 2012;13:916–26.

    Article  PubMed  Google Scholar 

  10. • Wick W, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012;13:707–15. Multicenter randomized trial demonstrating that MGMT methylation is predictive of treatment response in elderly patients with glioblastoma.

    Article  PubMed  CAS  Google Scholar 

  11. Reifenberger J, et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol. 1994;145:1175–90.

    PubMed  CAS  Google Scholar 

  12. Cairncross G, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24:2707–14.

    Article  PubMed  CAS  Google Scholar 

  13. van den Bent MJ, et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol. 2006;24:2715–22.

    Article  PubMed  Google Scholar 

  14. Cairncross G, et al. Chemotherapy plus radiotherapy (CT-RT) versus RT alone for patients with anaplastic oligodendroglioma: long-term results of the RTOG 9402 phase III study. J Clin Oncol. 2012;30(suppl; abstr 2008b).

  15. Van den Bent MJ, et al. Long-term follow-up results of EORTC 26951: a randomized phase III study on adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors (AOD). J Clin Oncol. 2012;30(suppl; abstr 2).

  16. Clinicaltrials.gov. Phase III intergroup study of radiotherapy versus temozolomide alone versus radiotherapy with concomitant and adjuvant temozolomide for patients with 1p/ 19q codeleted anaplastic glioma. Available at: http://clinicaltrials.gov/ct2/show/NCT00887146. Accessed on September 1, 2012.

  17. Clinicaltrials.gov. Phase III trial on concurrent and adjuvant temozolomide chemotherapy in non-1p/19q deleted anaplastic glioma. The CATNON Intergroup Trial. Available at: http://clinicaltrials.gov/ct2/show/NCT00626990. Accessed on September 1, 2012.

  18. Fallon KB, et al. Prognostic value of 1p, 19q, 9p, 10q, and EGFR-FISH analyses in recurrent oligodendrogliomas. J Neuropathol Exp Neurol. 2004;63:314–22.

    PubMed  CAS  Google Scholar 

  19. Felsberg J, et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol. 2004;14:121–30.

    Article  PubMed  CAS  Google Scholar 

  20. Kouwenhoven MC, et al. 1p/19q loss within oligodendroglioma is predictive for response to first line temozolomide but not to salvage treatment. European J Cancer. 2006;42:2499–503.

    Article  CAS  Google Scholar 

  21. Mariani L, et al. Loss of heterozygosity 1p36 and 19q13 is a prognostic factor for overall survival in patients with diffuse WHO grade 2 gliomas treated without chemotherapy. J Clin Oncol. 2006;24:4758–63.

    Article  PubMed  CAS  Google Scholar 

  22. Shaw EG, et al. Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol. 2012;30:3065–70.

    Article  PubMed  CAS  Google Scholar 

  23. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  PubMed  CAS  Google Scholar 

  24. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  PubMed  CAS  Google Scholar 

  25. Desestret V, et al. Prognostic stratification of gliomatosis cerebri by IDH1 R132H and INA expression. J Neurooncol. 2011;105:219–24.

    Article  PubMed  CAS  Google Scholar 

  26. Houillier C, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75:1560–6.

    Article  PubMed  CAS  Google Scholar 

  27. Kwon MJ, et al. Mutated IDH1 is a favorable prognostic factor for type 2 gliomatosis cerebri. Brain Pathol. 2012;22:307–17.

    Article  PubMed  CAS  Google Scholar 

  28. Myung JK, et al. IDH1 mutation of gliomas with long-term survival analysis. Oncol Rep. 2012;28(5):1639–44.

    Google Scholar 

  29. Olar A, et al. Absence of IDH1-R132H mutation predicts rapid progression of nonenhancing diffuse glioma in older adults. Ann Diagn Pathol. 2012;16:161–70.

    Article  PubMed  Google Scholar 

  30. Shibahara I, et al. IDH1/2 gene status defines the prognosis and molecular profiles in patients with grade III gliomas. Int J Clin Oncol. 2011.

  31. Takano S, et al. Immunohistochemical detection of IDH1 mutation, p53, and internexin as prognostic factors of glial tumors. J Neurooncol. 2012;108:361–73.

    Article  PubMed  CAS  Google Scholar 

  32. Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

    Article  PubMed  CAS  Google Scholar 

  33. van den Bent MJ, et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res. 2010;16:1597–604.

    Article  PubMed  Google Scholar 

  34. Phillips HS, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.

    Article  PubMed  CAS  Google Scholar 

  35. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  PubMed  CAS  Google Scholar 

  36. Colman H, et al. A multigene predictor of outcome in glioblastoma. Neuro-Oncology. 2010;12:49–57.

    Article  PubMed  CAS  Google Scholar 

  37. Aldape K, et al. RTOG 0525: molecular correlates from a randomized phase III trial of newly diagnosed glioblastoma. J Clin Oncol. 2011;29:(suppl; abstr LBA2000).

  38. Quillien V, et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, methylight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer. 2012;118:4201–11.

    Article  PubMed  CAS  Google Scholar 

  39. Clarke MJ, et al. Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol Cancer Ther. 2009;8:407–14.

    Article  PubMed  CAS  Google Scholar 

  40. Berman E. Omacetaxine: the FDA decision. Clin Adv Hematol Oncol. 2011;9:57–8.

    PubMed  Google Scholar 

  41. Goozner M. Drug approvals 2011: focus on companion diagnostics. J Natl Cancer Inst. 2012;104:84–6.

    Article  PubMed  Google Scholar 

  42. Baker SG, et al. Biomarkers, subgroup evaluation, and clinical trial design. Discov Med. 2012;13:187–92.

    PubMed  Google Scholar 

  43. Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol. 2009;27:4027–34.

    Article  PubMed  Google Scholar 

  44. Sargent DJ, et al. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–7.

    Article  PubMed  Google Scholar 

  45. Sargent D, Allegra C. Issues in clinical trial design for tumor marker studies. Semin Oncol. 2002;29:222–30.

    Article  PubMed  Google Scholar 

  46. Freidlin B, McShane LM, Korn EL. Randomized clinical trials with biomarkers: design issues. J Natl Cancer Inst. 2010;102:152–60.

    Article  PubMed  CAS  Google Scholar 

  47. Sampson JH, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28:4722–9.

    Article  PubMed  Google Scholar 

  48. Sampson JH, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. 2009;8:2773–9.

    Article  PubMed  CAS  Google Scholar 

  49. Bonetti M, Gelber RD. A graphical method to assess treatment-covariate interactions using the Cox model on subsets of the data. Stat Med. 2000;19:2595–609.

    Article  PubMed  CAS  Google Scholar 

  50. Bonetti M, Gelber RD. Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics. 2004;5:465–81.

    Article  PubMed  Google Scholar 

  51. Cai T, et al. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics. 2011;12:270–82.

    Article  PubMed  Google Scholar 

  52. Song X, Pepe MS. Evaluating markers for selecting a patient’s treatment. Biometrics. 2004;60:874–83.

    Article  PubMed  Google Scholar 

  53. Song X, Zhou XH. Evaluating markers for treatment selection based on survival time. Stat Med. 2011;30:2251–64.

    Article  PubMed  Google Scholar 

  54. Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006;5:27–36.

    Article  PubMed  CAS  Google Scholar 

  55. Barker AD, et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. 2009;86:97–100.

    Article  PubMed  CAS  Google Scholar 

  56. Available at: http://clinicaltrials.gov/ct2/show/NCT01266031. Accessed on October 14, 2012.

  57. Baker SG, Sargent DJ. Designing a randomized clinical trial to evaluate personalized medicine: a new approach based on risk prediction. J Natl Cancer Inst. 2010;102:1756–9.

    Article  PubMed  Google Scholar 

  58. • Galanis E, et al. Phase 2 trial design in neuro-oncology revisited: a report from the RANO group. Lancet Oncol. 2012;13:e196–204. Response Assessment in Neuro-Oncology (RANO) group position paper regarding future phase II trial designs, including importance of biomarker evaluation.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek R. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.R., Galanis, E. Incorporation of Prognostic and Predictive Factors Into Glioma Clinical Trials. Curr Oncol Rep 15, 56–63 (2013). https://doi.org/10.1007/s11912-012-0279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0279-z

Keywords

Navigation