Skip to main content
Log in

Subcortical Aphasia

  • Behavior (H. Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Subcortical structures have long been thought to play a role in language processing. Increasingly spirited debates on language studies, arising from as early as the nineteenth century, grew remarkably sophisticated as the years pass. In the context of non-thalamic aphasia, a few theoretical frameworks have been laid out. The disconnection hypothesis postulates that basal ganglia insults result in aphasia due to a rupture of connectivity between Broca and Wernicke’s areas. A second viewpoint conjectures that the basal ganglia would more directly partake in language processing, and a third stream proclaims that aphasia would stem from cortical deafferentation. On the other hand, thalamic aphasia is more predominantly deemed as a resultant of diaschisis. This article reviews the above topics with recent findings on deep brain stimulation, neurophysiology, and aphasiology.

Recent Findings

The more recent approach conceptualizes non-thalamic aphasias as the offspring of unpredictable cortical hypoperfusion. Regarding the thalamus, there is mounting evidence now pointing to leading contributions of the pulvinar/lateral posterior nucleus and the anterior/ventral anterior thalamus to language disturbances. While the former appears to relate to lexical-semantic indiscrimination, the latter seems to bring about a severe breakdown in word selection and/or spontaneous top-down lexical-semantic operations.

Summary

The characterization of subcortical aphasias and the role of the basal ganglia and thalamus in language processing continues to pose a challenge. Neuroimaging studies have pointed a path forward, and we believe that more recent methods such as tractography and connectivity studies will significantly expand our knowledge in this particular area of aphasiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wichmann T, DeLong MR. The basal ganglia. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of Neural Science. 5th ed. New York: McGraw-Hill; 2013. p. 982–98.

    Google Scholar 

  2. Nadeau SE, Crosson B. Subcortical aphasia. Brain Lang. 2000. https://doi.org/10.1006/brln.1997.1707.

  3. Damasio AR, Damasio H, Rizzo M, Varney N, Gersh F. Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol. 1982. https://doi.org/10.1001/archneur.1982.00510130017003.

  4. Cappa SF, Cavallotti G, Guidotti M, Papagno C, Vignolo LA. Subcortical aphasia: two clinical-CT correlation studies. Cortex. 1983. https://doi.org/10.1016/s0010-9452(83)80016-1.

  5. Broadbent G. On the cerebral mechanisms of speech and thought. Med Chir Trans. 1872. https://doi.org/10.1177/095952877205500108.

  6. Kussmaul A. Disturbances of speech. Cyclopedie Pract Med. 1877;14:581.

    Google Scholar 

  7. Wernicke C. Der aphasische Symptomencomplex. Breslau: Cohn & Weigert; 1874.

    Google Scholar 

  8. Lichtheim L. On aphasia. Brain. 1885;7:433–84.

    Article  Google Scholar 

  9. Marie P. The third left frontal convolution plays no special role in the function of language. Semaine Médicale. 1906;26:241–7.

    Google Scholar 

  10. Penfield W, Roberts L. Speech and brain mechanisms. Princeton: Princeton University Press; 1959.

    Google Scholar 

  11. Schuell H, Jenkins JJ, Jimenez-Pabon E. Aphasia in adults. New York: Harper & Row; 1965.

    Google Scholar 

  12. Radanovic M, Mansur LL. Aphasia in vascular lesions of the basal ganglia: a comprehensive review. Brain Lang. 2017. https://doi.org/10.1016/j.bandl.2017.05.003.

  13. Cambier J, Elghozi D, Strube E. Hémorragie de la tête du noyau caudé gauche. Désorganisation du discours et de l’expression graphique, perturbations des séries gestuelles [Hemorrhage of the head of the left caudate nucleus: disorganization of speech and graphic expression, and disturbances in gestures (author's transl)]. Rev Neurol (Paris). 1979;135:763–74.

    CAS  Google Scholar 

  14. Alexander MP, LoVerme SR Jr. Aphasia after left hemispheric intracerebral hemorrhage. Neurology. 1980. https://doi.org/10.1212/wnl.30.11.1193.

  15. Metter EJ, Riege WH, Hanson WR, Kuhl DE, Phelps ME, Squire LR, et al. Comparison of metabolic rates, language, and memory in subcortical aphasias. Brain Lang. 1983. https://doi.org/10.1016/0093-934x(83)90054-8.

  16. Wallesch CW, Kornhuber HH, Brunner RJ, Kunz T, Hollerbach B, Suger G. Lesions of the basal ganglia, thalamus, and deep white matter: differential effects on language functions. Brain Lang. 1983. https://doi.org/10.1016/0093-934x(83)90046-9.

  17. Puel M, Demonet JF, Cardebat D, Bonafé A, Gazounaud Y, Guiraud-Chaumeil B, Rascol A. Aphasies sous-corticales. Etude neurolinguistique avec scanner X de 25 cas [Subcortical aphasia. Neurolinguistic and x-ray computed tomography studies of 25 cases]. Rev Neurol (Paris). 1984;140:695–710.

    CAS  Google Scholar 

  18. Stein RW, Kase CS, Hier DB, Caplan LR, Mohr JP, Hemmati M, Henderson K. Caudate hemorrhage. Neurology. 1984. https://doi.org/10.1212/wnl.34.12.1549.

  19. Vergara F, Verdugo R, Guzmán N. Subcortical aphasia in striatal vascular lesion. Rev Chil Neuro-Psiquiat. 1984;22:215–20.

    Google Scholar 

  20. Fromm D, Holland AL, Swindell CS, Reinmuth OM. Various consequences of subcortical stroke. Prospective study of 16 consecutive cases. Arch Neurol. 1985. https://doi.org/10.1001/archneur.1985.04060090025009.

  21. Tanridag O, Kirshner HS. Aphasia and agraphia in lesions of the posterior internal capsule and putamen. Neurology. 1985. https://doi.org/10.1212/wnl.35.12.1797.

  22. Wallesch CW. Two syndromes of aphasia occurring with ischemic lesions involving the left basal ganglia. Brain Lang. 1985. https://doi.org/10.1016/0093-934x(85)90090-2.

  23. Lieberman RR, Ellenberg M, Restum WH. Aphasia associated with verified subcortical lesions: three case reports. Arch Phys Med Rehabil. 1986;67:410–4.

    CAS  PubMed  Google Scholar 

  24. Olsen TS, Bruhn P, Oberg RG. Cortical hypoperfusion as a possible cause of 'subcortical aphasia'. Brain. 1986. https://doi.org/10.1093/brain/109.3.393.

  25. Alexander MP, Naeser MA, Palumbo CL. Correlations of subcortical CT lesion and aphasia profiles. Brain. 1987. https://doi.org/10.1093/brain/110.4.961.

  26. Mehler MF. A novel disorder of linguistic expression following left caudate nucleus infarction. PP-153. Neurology. 1987;37:167.

    Article  Google Scholar 

  27. Perani D, Vallar G, Cappa S, Messa C, Fazio F. Aphasia and neglect after subcortical stroke. Brain. 1987. https://doi.org/10.1093/brain/110.5.1211.

  28. Viader F, Lechevalier B, Eustache F, Rollet I, Bouvard G, Petit MC. Un cas d’aphasie avec troubles du discours par infarctus des noyaux caudé et lenticulaire gauches. [A case of aphasia with speech disorders by infarction of the left caudate nucleus and putamen]. Rev Neurol (Paris). 1987;143:814–22.

    CAS  Google Scholar 

  29. Vallar G, Perani D, Cappa SF, Messa C, Lenzi GL, Fazio F. Recovery from aphasia and neglect after subcortical stroke: neuropsychological and cerebral perfusion study. J Neurol Neurosurg Psychiatry. 1988. https://doi.org/10.1136/jnnp.51.10.1269.

  30. Guarnaschelli C, Pistarini C, Fugazza G, Baldi M. Lesioni cerebrali profonde: aspetti neuroriabilitativi [Deep cerebral lesions: neuro-rehabilitative aspects]. Riv Neurol. 1989;59:15–8.

    CAS  PubMed  Google Scholar 

  31. Saggese JA, Toboada EO, Duhart JE, Adaro FV. Afasias de localización profunda [Aphasia of deep localization]. Neurologia. 1989;4:233–7.

    CAS  PubMed  Google Scholar 

  32. Caplan LR, Schmahmann JD, Kase CS, Feldmann E, Baquis G, Greenberg JP, et al. Caudate infarcts. Arch Neurol. 1990. https://doi.org/10.1001/archneur.1990.00530020029011.

  33. Robin DA, Schienberg S. Subcortical lesions and aphasia. J Speech Hear Disord. 1990. https://doi.org/10.1044/jshd.5501.90.

  34. Weiller C, Ringelstein EB, Reiche W, Thron A, Buell U. The large striatocapsular infarct. A clinical and pathophysiological entity. Arch Neurol. 1990. https://doi.org/10.1001/archneur.1990.00530100051013.

  35. De Renzi E, Colombo A, Scarpa M. The aphasic isolate. A clinical-CT scan study of a particularly severe subgroup of global aphasics. Brain. 1991. https://doi.org/10.1093/brain/114.4.1719.

  36. Pedraza L, Donoso FA, Poblete BAM, González VR. Subcortical aphasias. Rev Neurol Arg. 1991;16:107–12.

    Google Scholar 

  37. Sonobe N, Yashima Y, Takahashi Y, Katayose K, Kumashiro H. Three cases of anomic aphasia after lesions in and/or around the basal ganglia. Fukushima J Med Sci. 1991;37:29–40.

    CAS  PubMed  Google Scholar 

  38. Démonet JF, Celsis P, Puel M, Cardebat D, Marc-Vergnes JP, Rascol A. Thlamic and non-thalamic subcortical aphasia: a neurolinguistic and SPECT approach. In: Vallar G, Cappa SP, Wallesch CW, editors. Neuropsychological disorders associated with subcortical lesions. New York: Oxford University Press; 1992. p. 397–411.

    Google Scholar 

  39. Kennedy M, Murdoch BE. Chronic aphasia subsequent to striato-capsular and thalamic lesions in the left hemisphere. Brain Lang. 1993. https://doi.org/10.1006/brln.1993.1019.

  40. Willmes K, Poeck K. To what extent can aphasic syndromes be localized? Brain. 1993. https://doi.org/10.1093/brain/116.6.1527.

  41. Mega MS, Alexander MP. Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology. 1994. https://doi.org/10.1212/wnl.44.10.1824.

  42. Milhaud D, Magnié MN, Roger PM, Bedoucha P. Infarctus du noyau caudé ou infarctus striato-capsulaires antérieurs? [Infarction of the caudate nucleus or anterior striato-capsular infarction?]. Rev Neurol (Paris). 1994;150:286–91.

    CAS  Google Scholar 

  43. Pullicino P, Lichter D, Benedict R. Micrographia with cognitive dysfunction: “minimal” sequelae of a putaminal infarct. Mov Disord. 1994. https://doi.org/10.1002/mds.870090323.

  44. Fuh JL, Wang SJ. Caudate hemorrhage: clinical features, neuropsychological assessments and radiological findings. Clin Neurol Neurosurg. 1995. https://doi.org/10.1016/0303-8467(95)00059-s.

  45. Fabbro F, Clarici A, Bava A. Effects of left basal ganglia lesions on language production. Percept Mot Skills. 1996. https://doi.org/10.2466/pms.1996.82.3c.1291.

  46. Giroud M, Lemesle M, Madinier G, Billiar T, Dumas R. Unilateral lenticular infarcts: radiological and clinical syndromes, aetiology, and prognosis. J Neurol Neurosurg Psychiatry. 1997. https://doi.org/10.1136/jnnp.63.5.611.

  47. Halkar RK, Sisterhen C, Ammons J, Galt JR, Alazraki NP. Tc-99m ECD SPECT imaging in aphasia caused by subcortical infarct. Clin Nucl Med. 1997. https://doi.org/10.1097/00003072-199712000-00010.

  48. Takahashi W, Ohnuki Y, Ohta T, Hamano H, Yamamoto M, Shinohara Y. Mechanism of reduction of cortical blood flow in striatocapsular infarction: studies using [123I]iomazenil SPECT. Neuroimage. 1997. https://doi.org/10.1006/nimg.1997.0284.

  49. Friederici AD, von Cramon DY, Kotz SA. Language related brain potentials in patients with cortical and subcortical left hemisphere lesions. Brain. 1999. https://doi.org/10.1093/brain/122.6.1033.

  50. Kumral E, Evyapan D, Balkir K. Acute caudate vascular lesions. Stroke. 1999. https://doi.org/10.1161/01.str.30.1.100.

  51. Warren JD, Smith HB, Denson LA, Waddy HM. Expressive language disorder after infarction of left lentiform nucleus. J Clin Neurosci. 2000. https://doi.org/10.1054/jocn.1999.0238.

  52. Hua MS, Chen ST, Chu YC. Chinese writing function in patients with left versus right putaminal hemorrhage. J Clin Exp Neuropsychol. 2001. https://doi.org/10.1076/jcen.23.3.372.1182.

  53. Riecker A, Wildgruber D, Grodd W, Ackermann H. Reorganization of speech production at the motor cortex and cerebellum following capsular infarction: a follow-up functional magnetic resonance imaging study. Neurocase. 2002. https://doi.org/10.1076/neur.8.5.417.16181.

  54. Kotz SA, Frisch S, von Cramon DY, Friederici AD. Syntactic language processing: ERP lesion data on the role of the basal ganglia. J Int Neuropsychol Soc. 2003. https://doi.org/10.1017/S1355617703970093.

  55. Kuljic-Obradovic DC. Subcortical aphasia: three different language disorder syndromes? Eur J Neurol. 2003. https://doi.org/10.1046/j.1468-1331.2003.00604.x.

  56. Radanovic M, Azambuja M, Mansur LL, Porto CS, Scaff M. Thalamus and language: interface with attention, memory and executive functions. Arq Neuropsiquiatr. 2003. https://doi.org/10.1590/s0004-282x2003000100006.

  57. Russmann H, Vingerhoets F, Ghika J, Maeder P, Bogousslavsky J. Acute infarction limited to the lenticular nucleus: clinical, etiologic, and topographic features. Arch Neurol. 2003. https://doi.org/10.1001/archneur.60.3.351.

  58. Charron M, Pluchon C, Besson MN, Gil R. Troubles de la communication après régression d'une aphasie sous-corticale: disconnexion fronto-sous-corticale? [Communication disorders after decline in sub-cortical aphasia: the role of fronto-sub-cortical disconnection?]. Rev Neurol (Paris). 2004. https://doi.org/10.1016/s0035-3787(04)71016-4.

  59. Radanovic M, Mansur LL, Azambuja MJ, Porto CS, Scaff M. Contribution to the evaluation of language disturbances in subcortical lesions: a pilot study. Arq Neuropsiquiatr. 2004. https://doi.org/10.1590/s0004-282x2004000100009.

  60. Troyer AK, Black SE, Armilio ML, Moscovitch M. Cognitive and motor functioning in a patient with selective infarction of the left basal ganglia: evidence for decreased non-routine response selection and performance. Neuropsychologia. 2004. https://doi.org/10.1016/j.neuropsychologia.2003.12.003.

  61. de Boissezon X, Démonet JF, Puel M, Marie N, Raboyeau G, Albucher JF, Chollet F, Cardebat D. Subcortical aphasia: a longitudinal PET study. Stroke. 2005. https://doi.org/10.1161/01.STR.0000169947.08972.4f.

  62. Krishnan G, Tiwari S, Pai AR, Rao SN. Variability in aphasia following subcortical hemorrhagic lesion. Ann Neurosci. 2012. https://doi.org/10.5214/ans.0972.7531.190404.

  63. Peñaloza C, Rodríguez-Fornells A, Rubio F, De Miquel MA, Juncadella M. Language recovery and evidence of residual deficits after nonthalamic subcortical stroke: a 1 year follow-up study. J Neurolinguistics. 2014. https://doi.org/10.1016/j.jneuroling.2014.08.001.

  64. Kang EK, Sohn HM, Han MK, Paik NJ. Subcortical aphasia after stroke. Ann Rehabil Med. 2017. https://doi.org/10.5535/arm.2017.41.5.725.

  65. Naeser MA, Alexander MP, Helm-Estabrooks N, Levine HL, Laughlin SA, Geschwind N. Aphasia with predominantly subcortical lesion site. Arch Neurol. 1982. https://doi.org/10.1001/archneur.1982.00510130004002.

  66. Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML. Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain. 1989. https://doi.org/10.1093/brain/112.1.1.

  67. Crosson B. Subcortical functions in language: a working model. Brain Lang. 1985. https://doi.org/10.1016/0093-934x(85)90085-9.

  68. Crosson B, Benefield H, Sadek J, Moore A, Wierenga C, et al. Left and right basal ganglia and frontal activity during language generation. Contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc. 2003. https://doi.org/10.1017/SI35561770397010X.

  69. Wallesch C-W, Papagno C. Subcortical aphasia. In: Rose FC, Whurr R, Wyke MA, editors. Aphasia. London: Whurr Publishers; 1988. p. 256–87.

  70. Ketteler D, Kastrau F, Vohn R, Huber W, et al. Neuroimage. 2008. https://doi.org/10.1016/j.neuroimage.2007.10.023.

  71. Copland DA, Chenery HJ, Murdoch BE. Understanding ambiguous words in biased sentences: evidence of transient contextual effects in individuals with nonthalamic subcortical lesions and Parkinson’s disease. Cortex. 2000. https://doi.org/10.1016/s0010-9452(08)70541-0.

  72. Copland DA, Chenery HJ, Murdoch BE. Discourse priming of homophones in individuals with dominant nonthalamic subcortical lesions, cortical lesions and Parkinson’s disease. J Clin Exp Neuropsychol. 2001. https://doi.org/10.1076/jcen.23.4.538.1233.

  73. Copland D. The basal ganglia and semantic engagement: potential insights from semantic priming in individuals with subcortical vascular lesions, Parkinson’s disease, and cortical lesions. J Int Neuropsychol Soc. 2003. https://doi.org/10.1017/51355617703970081.

  74. Weiller C, Isensee C, Rijntjes M, Huber W, Müller S, Bier D, et al. Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol. 1995. https://doi.org/10.1002/ana.410370605.

  75. Cohen H. Language impairment in Parkinson’s Disease. In: Stemmer B, Whitaker HA, editors. Handbook of Neurolinguistics. New York: Academic Press; 1998. p. 475–83.

    Chapter  Google Scholar 

  76. Skeel RJ, Crosson B, Nadeau SE, Algina J, Bauer RM, Fennell EB. Basal ganglia dysfunction, working memory, and sentence comprehension in patients with Parkinson’s disease. Neuropsychologia. 2001. https://doi.org/10.1016/s0028-3932(01)00026-4.

  77. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003. https://doi.org/10.1016/s0197-4580(02)00065-9.

  78. Nadeau SE. Subcortical language mechanisms. In: Stemmer B, Whitaker HA, editors. Handbook of the Neuroscience of Language. San Diego: Academic Press; 2008. p. 329–40.

    Chapter  Google Scholar 

  79. Duffy JR. Motor speech disorders: substrates, differential diagnosis, and management. 2nd ed. St Louis: Mosby; 2005.

    Google Scholar 

  80. Prosody KD. In: Cognitive Neuroscience of Language. New York: Psychology Press; 2015.

    Google Scholar 

  81. Teichmann M, Dupoux E, Cesaro P, Bachoud-Lévi AC. The role of the striatum in sentence processing: evidence from a priming study in early stages of Huntington’s disease. Neuropsychologia. 2008. https://doi.org/10.1016/j.neuropsychologia.2007.07.022.

  82. Teichman M, Rosso C, Martini J-B, Bloch I, Brugières P, Duffau H, et al. A cortical-subcortical syntax pathway linking Broca’s area and the striatum. Hum Brain Mapp. 2015. https://doi.org/10.1002/hbm.22769.

  83. • Shi ER, Zhang Q. A domain-general perspective on the role of the basal ganglia in language and music: benefits of music therapy for the treatment of aphasia. Brain Lang. 2020. https://doi.org/10.1016/j.bandl.2020.104811The authors trace an interesting parallel between the domain-general function of basal ganglia in language and music using rhythm processing as the basis for their discussion.

  84. • Xu L, Huang L, Cui W, Yu Q. Reorganized functional connectivity of language centers as a possible compensatory mechanism for basal ganglia aphasia. Brain Inj. 2020. https://doi.org/10.1080/02699052.2020.1716995This study focus in functional connectivity to support the notion that lesions of cortico-subcortical circuits lead to inter- and intrahemispheric modifications that result in different patterns of language recovery.

  85. Llano DA. The thalamus and language. In: Hickock G, Small SL, editors. Neurobiology of Language. London: Academic Press; 2016. p. 95–114. https://doi.org/10.1016/B978-0-12-407794-2.00009-2.

    Chapter  Google Scholar 

  86. •• Crosson B. The role of cortico-thalamo-cortical circuits in language: recurrent circuits revisited. Neuropsychol Rev. 2019. https://doi.org/10.1007/s11065-019-09421-8The author further develops his well-known model regarding cortico-thalamic-cortical circuits role in lexical-semantic integration that is critical for efficient word retrieval.

  87. Fritsch M, Krause T, Klostermann F, Villringer K, Ihrke M. Nolte, CH. “Thalamic aphasia” after stroke is associated with left anterior lesion location. J Neurol. 2020. https://doi.org/10.1007/s00415-019-09560-1.

  88. Temel M, Polat BSA, Kayali N, Karadas O. Cognitive profile of patients with thalamic hemorrhage according to lesion localization. Dement Geriatr Cogn Dis Extra. 2021. https://doi.org/10.1159/000516439.

  89. Sandson TA, Daffner KR, Carvalho PA, Mesulam MM. Frontal lobe dysfunction following infarction of the left-sided medial thalamus. Arch Neurol. 1991. https://doi.org/10.1001/archneur.1991.00530240106031.

  90. Bulleid L, Hughes T, Leach P. A case of transient thalamic dysphasia-considering the role of the thalamus in language. Childs Nerv Syst. 2018. https://doi.org/10.1007/s00381-018-3967-7.

  91. Osawa A, Maeshima S. Aphasia and unilateral spatial neglect due to acute thalamic hemorrhage: clinical correlations and outcomes. Neurol Sci. 2016. https://doi.org/10.1007/s10072-016-2476-2.

  92. Bruzzone MJ, Gill R, Ruland S. Teaching NeuroImages: aphasia after infarction of the left pulvinar nucleus. Neurology. 2016. https://doi.org/10.1212/WNL.0000000000003003.

  93. Giraldez MB, Gill R, Ruland S. Aphasia after infarction of the left posterior pulvinar nucleus of the thalamus-case report and literature review. J Neurol Sci. 2015. https://doi.org/10.1016/j.jns.2015.08.1316.

  94. De Witte L, Brouns R, Kavadias D, Engelborghs S, De Deyn PP, Mariën P. Cognitive, affective and behavioural disturbances following vascular thalamic lesions: a review. Cortex. 2011. https://doi.org/10.1016/j.cortex.2010.09.002.

  95. •• Rangus I, Fritsch M, Endres M, Udke B, Nolte CH. Frequency and phenotype of thalamic aphasia. J Neurol. 2021. https://doi.org/10.1007/s00415-021-10640-4In this paper, the authors examined a cohort of 52 patients with unilateral thalamic lesions using 3-Tesla MRI studies resulting in a highly accurate analysis of the correlation between lesion site and aphasia profile.

  96. Nishio Y, Hashimoto M, Ishii K, Mori E. Neuroanatomy of a neurobehavioral disturbance in the left anterior thalamic infarction. J Neurol Neurosurg Psychiatry. 2011. https://doi.org/10.1136/jnnp.2010.236463.

  97. Levin N, Ben-Hur T, Biran I, Wertman E. Category specific dysnomia after thalamic infarction: a case-control study. Neuropsychologia. 2005. https://doi.org/10.1016/j.neuropsychologia.2004.12.001.

  98. Rai M, Okazaki Y, Inoue N, Araki K, Fukunaga R, Sawada T. Object use impairment associated with left anterior thalamic infarction. Eur Neurol. 2004. https://doi.org/10.1159/000082371.

  99. Carrera E, Michel P, Bogousslavsky J. Anteromedian, central, and posterolateral infarcts of the thalamus: three variant types. Stroke. 2004. https://doi.org/10.1161/01.STR.0000147039.49252.2f.

  100. Ghika-Schmid F, Bogousslavsky J. The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol. 2000;48:220–7.

    Article  CAS  Google Scholar 

  101. Raymer AM, Moberg P, Crosson B, Nadeau S, Rothi LJ. Lexical-semantic deficits in two patients with dominant thalamic infarction. Neuropsychologia. 1997. https://doi.org/10.1016/s0028-3932(96)00069-3.

  102. Clarke S, Assal G, Bogousslavsky J, Regli F, Townsend DW, Leenders KL, Blecic S. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry. 1994. https://doi.org/10.1136/jnnp.57.1.27.

  103. Lucchelli F, De Renzi E. Proper name anomia. Cortex. 1992. https://doi.org/10.1016/s0010-9452(13)80050-0.

  104. Bruyn RPM. Thalamic aphasia A conceptual critique J Neurol. 1989. https://doi.org/10.1007/BF00314212.

  105. Mori E, Yamadori A, Mitani Y. Left thalamic infarction and disturbance of verbal memory: a clinicoanatomical study with a new method of computed tomographic stereotaxic lesion localization. Ann Neurol. 1986. https://doi.org/10.1002/ana.410200604.

  106. Graff-Radford NR, Damasio H, Yamada T, Eslinger PJ, Damasio AR. Nonhaemorrhagic thalamic infarction. Clinical, neuropsychological and electrophysiological findings in four anatomical groups defined by computerized tomography. Brain. 1985. https://doi.org/10.1093/brain/108.2.485.

  107. Gorelick PB, Hier DB, Benevento L, Levitt S, Tan W. Aphasia after left thalamic infarction. Arch Neurol. 1984. https://doi.org/10.1001/archneur.1984.04050230082026.

  108. Archer CR, Ilinsky IA, Goldfader PR, Smith KR Jr. Case report. Aphasia in thalamic stroke: CT stereotactic localization. J Comput Assist Tomogr. 1981. https://doi.org/10.1097/00004728-198106000-00024.

  109. Bohsali AA, Triplett W, Sudhyadhom A, Gullett JM, McGregor K, Fitzgerald DB, et al. Broca’s area–thalamic connectivity. Brain Lang. 2015. https://doi.org/10.1016/j.bandl.2014.12.001.

  110. Liu J, Cui Z, Li L. Local and whole-network topologies reveal that pulvinar and semantic hub interactions correlate with picture vocabulary. Neuroreport. 2020. https://doi.org/10.1097/WNR.0000000000001444.

  111. Hart J Jr, Maguire MJ, Motes M, Mudar RA, Chiang HS, Womack KB, Kraut MA. Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus. Brain Lang. 2013. https://doi.org/10.1016/j.bandl.2012.08.002.

  112. Crosson B Subcortical functions in language and memory. New York: Guilford; 1992.

  113. Neau JP, Bogousslavsky J. The syndrome of posterior choroidal artery territory infarction. Ann Neurol. 1996. https://doi.org/10.1002/ana.410390614.

  114. Fang Q, Chou XL, Peng B, Zhong W, Zhang LI, Tao HW. A differential circuit via retino-colliculo-pulvinar pathway enhances feature selectivity in visual cortex through surround suppression. Neuron. 2020. https://doi.org/10.1016/j.neuron.2019.10.02.

  115. Lakatos P, O’Connell MN, Barczak A, McGinnis T, Neymotin S, Schroeder CE, et al. The thalamocortical circuit of auditory mismatch negativity. Biol Psychiatry. 2020. https://doi.org/10.1016/j.biopsych.2019.10.029.

  116. Moreaud O, Pellat J, Charnallet A, Carbonnel S, Brennen T. Deficiency in the reproduction and learning proper names after left tubero-thalamic ischemic lesion. Rev Neurol (Paris). 1995;151:93–9.

    CAS  Google Scholar 

  117. Szirmai I, Vastagh I, Szombathelyi E, Kamondi A. Strategic infarcts of the thalamus in vascular dementia. J Neurol Sci. 2002. https://doi.org/10.1016/s0022-510x(02)00273-3.

  118. Cox DE, Heilman KM. Dynamic-intentional thalamic aphasia: a failure of lexical-semantic self-activation. Neurocase. 2011. https://doi.org/10.1080/13554794.2010.504731.

  119. Jankowski MM, Ronnqvist KC, Tsanov M, Vann SD, Wright NF, Erichsen JT, et al. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci. 2013. https://doi.org/10.3389/fnsys.2013.00045.

  120. Lam JM, Globas C, Hosp JA, Karnath HO, Wächter T, Luft AR. Impaired implicit learning and feedback processing after stroke. Neuroscience. 2016. https://doi.org/10.1016/j.neuroscience.2015.11.051.

  121. Solomon EA, Lega BC, Sperling MR, Kahana MJ. Hippocampal theta codes for distances in semantic and temporal spaces. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1906729116.

  122. Bastiaansen MC, Oostenveld R, Jensen O, Hagoort P. I see what you mean: theta power increases are involved in the retrieval of lexical semantic information. Brain Lang. 2008. https://doi.org/10.1016/j.bandl.2007.10.006.

  123. Mousavi N, Nazari MA, Babapour J, Jahan A. Electroencephalographic characteristics of word finding during phonological and semantic verbal fluency tasks. Neuropsychopharmacol Rep. 2020. https://doi.org/10.1002/npr2.12129.

  124. Leszczyński M, Staudigl T. Memory-guided attention in the anterior thalamus. Neurosci Biobehav Rev. 2016. https://doi.org/10.1016/j.neubiorev.2016.04.015.

  125. Ford AA, Triplett W, Sudhyadhom A, Gullett J, McGregor K, Fitzgerald DB, Mareci T, et al. Broca's area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front Neuroanat. 2013. https://doi.org/10.3389/fnana.2013.00008.

  126. Ojemann GA. Language and the thalamus: object naming and recall during and after thalamic stimulation. Brain Lang. 1975. https://doi.org/10.1016/s0093-934x(75)80057-5.

  127. Ojemann GA. The neurobiology of language and verbal memory: observations from awake neurosurgery. Int J Psychophysiol. 2003. https://doi.org/10.1016/s0167-8760(03)00051-5.

  128. Johnson MD, Ojemann GA. The role of the human thalamus in language and memory: evidence from electrophysiological studies. Brain Cogn. 2000. https://doi.org/10.1006/brcg.1999.1101.

  129. Graff-Radford NR. Syndromes due to acquired thalamic damage. In: Feinberg TE, Farah MJ, editors. Behavioral Neurology and Neuropsychology. New York: McGraw-Hill; 1997. p. 443.

    Google Scholar 

  130. Prabhakar AT, Shaikh AI, Vijayaraghavan A, Rynjah G. Thalamic hypophonia and the neural control of phonation. Neurol India. 2018. https://doi.org/10.4103/0028-3886.246247.

  131. Obayashi S. The supplementary motor area responsible for word retrieval decline after acute thalamic stroke revealed by coupled SPECT and near-infrared spectroscopy. Brain Sci. 2020. https://doi.org/10.3390/brainsci10040247.

  132. Janssen N, Mendieta CCR. The dynamics of speech motor control revealed with time-resolved fMRI. Cereb Cortex. 2020. https://doi.org/10.1093/cercor/bhz084.

  133. Nishio Y, Hashimoto M, Ishii K, Ito D, Mugikura S, Takahashi S, Mori E. Multiple thalamo-cortical disconnections in anterior thalamic infarction: implications for thalamic mechanisms of memory and language. Neuropsychologia. 2014. https://doi.org/10.1016/j.neuropsychologia.2013.11.025.

  134. Chenery HJ, Angwin AJ, Copland DA. The basal ganglia circuits, dopamine, and ambiguous word processing: a neurobiological account of priming studies in Parkinson's disease. J Int Neuropsychol Soc. 2008. https://doi.org/10.1017/S1355617708080491.

  135. León-Cabrera P, Pagonabarraga J, Morís J, Martínez-Horta S, Marín-Lahoz J, Horta-Barba A, et al. Neural signatures of predictive language processing in Parkinson’s disease with and without mild cognitive impairment. Cortex. 2021. https://doi.org/10.1016/j.cortex.2021.03.032.

  136. Alario FX, Chainay H, Lehericy S, Cohen L. The role of the supplementary motor area (SMA) in word production. Brain Res. 2006. https://doi.org/10.1016/j.brainres.2005.11.104.

  137. Swadlow HA, Gusev AG. The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci. 2001. https://doi.org/10.1038/86054.

  138. Mesulam M-M. Behavioral neuroanatomy. Large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In: Mesulam M-M, editor. Principles of Behavioral and Cognitive Neurology. 2nd ed. New York: Oxford University Press; 2000. p. 1–120.

    Google Scholar 

  139. Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor characterization of the basal ganglia: evidence from human and non-human primate electrophysiology. Front Neurosci. 2018. https://doi.org/10.3389/fnins.2018.00385.

  140. Williams NR, Okun MS. Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest. 2013. https://doi.org/10.1172/JCI68341.

  141. Parsons TD, Rogers SA, Braaten AJ, Woods SP, Tröster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 2006. https://doi.org/10.1016/S1474-4422(06)70475-6.

  142. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: The COMPARE Trial. Ann Neurol. 2009. https://doi.org/10.1002/ana.21596.

  143. Mikos A, Bowers D, Noecker AM, McIntyre CC, Won M, Chaturvedi A, et al. Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage. 2011. https://doi.org/10.1016/j.neuroimage.2010.03.068.

  144. Anzak A, Gaynor L, Beigi M, Limousin P, Hariz M, Zrinzo L, et al. A gamma band specific role of the subthalamic nucleus in switching during verbal fluency tasks in Parkinson’s disease. Exp Neurol. 2011. https://doi.org/10.1016/j.expneurol.2011.07.010.

  145. Wojtecki L, Elben S, Vesper J, Schnitzler A. The rhythm of the executive gate of speech: subthalamic low-frequency oscillations increase during verbal generation. Eur J Neurosci. 2017. https://doi.org/10.1111/ejn.13429.

  146. Hohlefeld FU, Ewald A, Ehlen F, Tiedt HO, Horn A, Kühn AA, et al. Neural correlates of lexical decisions in Parkinson’s disease revealed with multivariate extraction of cortico-subthalamic interactions. Clin Neurophysiol. 2017. https://doi.org/10.1016/j.clinph.2016.12.026.

  147. Ehlen F, Schoenecker T, Kühn AA, Klostermann F. Differential effects of deep brain stimulation on verbal fluency. Brain Lang. 2014. https://doi.org/10.1016/j.bandl.2014.04.002.

  148. Alomar S, King NK, Tam J, Bari AA, Hamani C, Lozano AM. Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: a meta-analysis. Mov Disord. 2017. https://doi.org/10.1002/mds.26924.

  149. Ehlen F, Vonberg I, Tiedt HO, Horn A, Fromm O, Kühn AA, Klostermann F. Thalamic deep brain stimulation decelerates automatic lexical activation. Brain Cogn. 2017. https://doi.org/10.1016/j.bandc.2016.10.001.

  150. Tiedt HO, Ehlen F, Wyrobnik M, Klostermann F. Thalamic but not subthalamic neuromodulation simplifies word use in spontaneous language. Front Hum Neurosci. 2021. https://doi.org/10.3389/fnhum.2021.656188.

  151. Liu S, Guo J, Meng J, Wang Z, Yao Y, Yang J, et al. Abnormal EEG complexity and functional connectivity of brain in patients with acute thalamic ischemic stroke. Comput Math Methods Med. 2016. https://doi.org/10.1155/2016/2582478.

  152. Wang D, Jorge A, Lipski WJ, Kratter IH, Henry LC, Richardson RM. Lateralized effect of thalamic deep brain stimulation location on verbal abstraction. Mov Disord. 2021. https://doi.org/10.1002/mds.28606.

  153. Ojemann G. Language and verbal memory functions during and after human thalamic stimulation. Neurol Neurocir Psiquiatr. 1977;18:35–45.

    CAS  PubMed  Google Scholar 

  154. Mücke D, Hermes A, Roettger TB, Becker J, Niemann H, Dembek TA, et al. The effects of thalamic deep brain stimulation on speech dynamics in patients with essential tremor: an articulographic study. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0191359.

  155. Pedrosa DJ, Auth M, Pauls KA, Runge M, Maarouf M, Fink GR, Timmermann L. Verbal fluency in essential tremor patients: the effects of deep brain stimulation. Brain Stimul. 2014. https://doi.org/10.1016/j.brs.2014.02.012.

  156. Farokhniaee A, McIntyre CC. Theoretical principles of deep brain stimulation induced synaptic suppression. Brain Stimul. 2019. https://doi.org/10.1016/j.brs.2019.07.005.

  157. Bhatnagar SC, Mandybur GT. Effects of intralaminar thalamic stimulation on language functions. Brain Lang. 2005. https://doi.org/10.1016/j.bandl.2004.05.002.

  158. Hebb AO, Ojemann GA. The thalamus and language revisited. Brain Lang. 2013. https://doi.org/10.1016/j.bandl.2012.06.010.

  159. • Silveri MC. Contribution of the cerebellum and the basal ganglia to language production: speech, word fluency, and sentence construction—evidence from pathology. Cerebellum, 10.1007/s12311-020-01207-6. 2021; An interesting review that integrates the basal ganglia and cerebellar circuits in particular aspects of language production, from motor (speech) to cognitive (sentence construction) abilities.

  160. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988. https://doi.org/10.1038/331585a0.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Almeida VN: manuscript preparation and revision; Radanovic M: conceptualization, manuscript preparation, and revision

Corresponding author

Correspondence to Marcia Radanovic.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 Non-thalamic lesions: correlation between clinical findings and lesion site

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radanovic, M., Almeida, V.N. Subcortical Aphasia. Curr Neurol Neurosci Rep 21, 73 (2021). https://doi.org/10.1007/s11910-021-01156-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01156-5

Keywords

Navigation