Skip to main content

Advertisement

Log in

Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes

  • Nerve and Muscle (LH Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na+/K+-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sinnreich M, Taylor BV, Dyck PJ. Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist. 2005;11:63–79.

    Article  PubMed  Google Scholar 

  2. Smith AG, Singleton JR. Diabetic neuropathy. Continuum. 2012;18:60–84. This is an excellent and detailed review of DN.

    PubMed  Google Scholar 

  3. Tracy JA, Engelstad JK, Dyck PJ. Microvasculitis in diabetic lumbosacral radiculoplexus neuropathy. J Clin Neuromuscul Dis. 2009;11:44–8.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J. 2006;82:95–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Callaghan BC, Hur J, Feldman EL. Diabetic neuropathy: one disease or two? Curr Opin Neurol. 2012;25:536–41.

    Article  PubMed  Google Scholar 

  7. Dyck PJ, Albers JW, Anderson H, et al. Diabetic polyneuropathies: update on research definitions, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. 2011;27:620–8. This is an important 2009 Toronto consensus statement updating research on and clinical definitions of diabetic DSP.

    Article  Google Scholar 

  8. Mackenzie K, DeLisa JA. Distal sensory latency measurement of the superficial radial nerve in normal adult subjects. Arch Phys Med Rehabil. 1981;62:31–4.

    CAS  PubMed  Google Scholar 

  9. Tesfaye S, Kempler P. Painful diabetic neuropathy. Diabetologia. 2005;48:805–7.

    Article  CAS  PubMed  Google Scholar 

  10. Dyck PJ, Overland CJ, Low PA, et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve. 2010;42:157–64.

    Article  PubMed  Google Scholar 

  11. Dyck PJ, Overland CJ, Low PA, et al. “Unequivocally abnormal” vs “usual” signs and symptoms for proficient diagnosis of diabetic polyneuropathy: Cl vs N Phys trial. Arch Neurol. 2012;69:1609–14. This is a follow-up Mayo Clinic study showing how clinical proficiency may be improved.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dyck PJ, Albers JW, Wolfe J, et al. A trial of proficiency of nerve conduction: greater standardization still needed. Muscle Nerve. 2013;48:369–74. This presents the electrophysiological component of the Mayo Clinic-based study of physician proficiency.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Litchy WJ, Albers JW, Wolfe J, Bolton CF, Walsh N, Klein CJ, et al. Proficiency of nerve conduction using standard methods and reference values. Muscle Nerve. 2014. doi:10.1002/mus.24243. This is a follow-up Mayo Clinic study showing how nerve conduction proficiency may be improved.

    Google Scholar 

  14. Chaudhry V, Cornblath DR, Mellits ED. Inter- and intra-examiner reliability of nerve conduction measurements in normal subjects. Ann Neurol. 1991;30:841–3.

    Article  CAS  PubMed  Google Scholar 

  15. Low PA, Benrud-Larson LM, Sletten DM, et al. Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care. 2004;27:2942–7.

    Article  PubMed  Google Scholar 

  16. Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–50.

    Article  CAS  PubMed  Google Scholar 

  17. Wiggin TD, Sullivan KA, Pop-Busui R, et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009;58:1634–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pearsall AW, Russell Jr GV. Ipsilateral clavicle fracture, sternoclavicular joint subluxation, and long thoracic nerve injury: an unusual constellation of injuries sustained during wrestling. Am J Sport Med. 2000;28:904–8.

    Google Scholar 

  19. Witte DR, Tesfaye S, Chaturvedi N, et al. Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia. 2005;48:164–71.

    Article  CAS  PubMed  Google Scholar 

  20. Stella P, Ellis D, Maser RE, et al. Cardiovascular autonomic neuropathy (expiration and inspiration ratio) in type 1 diabetes. Incidence and predictors. J Diabetes Complicat. 2000;14:1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Saleh A, Roy Chowdhury SK, Smith DR, et al. Ciliary neurotrophic factor activates NF-B to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology. 2013;65:65–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. O’Brien PD, Hinder LM, Sakowski SA, Feldman EL. ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxid Redox Signal. 2014. doi:10.1089/ars.2013.5807.

    PubMed  Google Scholar 

  23. Vincent AM, McLean LL, Backus C, et al. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 2005;19:638–40.

    CAS  PubMed  Google Scholar 

  24. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.

    Article  CAS  PubMed  Google Scholar 

  25. Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25:612–28.

    Article  CAS  PubMed  Google Scholar 

  26. Edwards JL, Vincent AM, Cheng HT, et al. Diabetic neuropathy: mechanisms to management. Pharmacol Ther. 2008;120:1–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vincent AM, Callaghan BC, Smith AL, et al. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol. 2011;7:573–83.

    Article  CAS  PubMed  Google Scholar 

  28. Witzke KA, Vinik AI, Grant LM, et al. Loss of RAGE defense: a cause of Charcot neuroarthropathy? Diabetes Care. 2011;34:1617–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  30. Pacher P, Liaudet L, Soriano FG, et al. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes. 2002;51:514–21.

    Article  CAS  PubMed  Google Scholar 

  31. Kellogg AP, Wiggin TD, Larkin DD, et al. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes. 2007;56:2997–3005.

    Article  CAS  PubMed  Google Scholar 

  32. Stavniichuk R, Shevalye H, Lupachyk S, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2014. doi:10.1002/dmrr.2549.

    PubMed  Google Scholar 

  33. Cameron NE, Cotter MA, Jack AM, et al. Protein kinase C effects on nerve function, perfusion, Na+, K+-ATPase activity and glutathione content in diabetic rats. Diabetologia. 1999;42:1120–30.

    Article  CAS  PubMed  Google Scholar 

  34. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.

    Article  CAS  PubMed  Google Scholar 

  35. Timmins JM, Ozcan L, Seimon TA, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009;119:2925–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature. 2000;403:98–103.

    Article  CAS  PubMed  Google Scholar 

  37. Cameron NE, Cotter MA, Low PA. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol. 1991;261:E1–8.

    CAS  PubMed  Google Scholar 

  38. Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes. 1997;46 Suppl 2:S38–42.

    Article  CAS  PubMed  Google Scholar 

  39. Sima AA, Zhang W, Grunberger G. Type 1 diabetic neuropathy and C-peptide. Exp Diabesity Res. 2004;5:65–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hinder LM, Vincent AM, Hayes JM, et al. Apolipoprotein E knockout as the basis for mouse models of dyslipidemia-induced neuropathy. Exp Neurol. 2013;239:102–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Vincent AM, Hayes JM, McLean LL, et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58:2376–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hinder LM, Vivekanandan-Giri A, McLean LL, et al. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol. 2013;216:1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Cameron NE, Cotter MA. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets. 2008;9:60–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Schmeichel AM, Iida H, et al. Enhanced inflammatory response via activation of NF-κB in acute experimental diabetic neuropathy subjected to ischemia-reperfusion injury. J Neurol Sci. 2006;247:47–52.

    Article  CAS  PubMed  Google Scholar 

  45. Chowdhury SK, Zherebitskaya E, Smith DR, et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes. 2010;59:1082–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ma J, Farmer KL, Pan P, et al. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther. 2014;348:281–92.

    Article  PubMed  Google Scholar 

  47. Fernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab. 2005;5:39–49.

    Article  Google Scholar 

  48. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86. This pivotal trial demonstrated the benefit of intensive glucose control in delaying neuropathy in type 1 diabetes and changed the standard of diabetes care.

  49. Diabetes Control and Complications Trial (DCCT) Research Group. Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial. Ann Neurol. 1995;38:869–80.

    Article  Google Scholar 

  50. Albers JW, Herman WH, Pop-Busui R, et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Diabetes Care. 2010;33:1090–6. The importance of early and tight glucose control is reflected in long-term protection against DSP in type 1 diabetes.

  51. Martin CL, Albers JW, Pop-Busui R, et al. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37:31–8.

    Article  CAS  PubMed  Google Scholar 

  52. Callaghan BC, Little AA, Feldman EL, et al. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6, CD007543.

    PubMed Central  PubMed  Google Scholar 

  53. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17.

    Article  CAS  PubMed  Google Scholar 

  54. Azad N, Emanuele NV, Abraira C, et al. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complicat. 1999;13:307–13.

    Article  CAS  PubMed  Google Scholar 

  55. Charles M, Fleischer J, Witte DR, et al. Impact of early detection and treatment of diabetes on the 6-year prevalence of cardiac autonomic neuropathy in people with screen-detected diabetes: ADDITION-Denmark, a cluster-randomised study. Diabetologia. 2013;56:101–8.

    Article  CAS  PubMed  Google Scholar 

  56. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  57. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30. Largest trial demonstrating benefit of intensive glucose control in patients with type 2 diabetes.

  58. Pop-Busui R, Lu J, Brooks MM, et al. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care. 2013;36:3208–15. This is the first large trial of patients with type 2 diabetes demonstrating that different glucose-lowering strategies have different effects on neuropathy prevention.

    Article  CAS  PubMed  Google Scholar 

  59. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–9. Initial study of the efficacy of lifestyle intervention.

  60. Kluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complicat. 2012;26:424–9. This trial demonstrates the effects of exercise and objective measures of DSP.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Ziegler D. Treatment of diabetic neuropathy and neuropathic pain: how far have we come? Diabetes Care. 2008;31 Suppl 2:S255–61.

    CAS  PubMed  Google Scholar 

  62. Ziegler D, Low PA, Litchy WJ, et al. Efficacy and safety of antioxidant treatment with alpha-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care. 2011;34:2054–60. This is a summary of all trials involving α-lipoic acid.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ziegler D, Nowak H, Kempler P, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a meta-analysis. Diabet Med. 2004;21:114–21.

    Article  CAS  PubMed  Google Scholar 

  64. Boulton AJ, Kempler P, Ametov A, et al. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab Res Rev. 2013;29:327–33. This is an excellent review of pathogenic treatments for DSP.

    Article  CAS  PubMed  Google Scholar 

  65. Sima AA, Calvani M, Mehra M, et al. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials. Diabetes Care. 2005;28:89–94.

    Article  CAS  PubMed  Google Scholar 

  66. Ziegler D, Ametov A, Barinov A, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29:2365–70.

    Article  CAS  PubMed  Google Scholar 

  67. Ziegler D, Reljanovic M, Mehnert H, et al. α-Lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp Clin Endocrinol Diabetes. 1999;107:421–30.

    Article  CAS  PubMed  Google Scholar 

  68. Pop-Busui R, Stevens MJ, Raffel DM, et al. Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomised controlled trial. Diabetologia. 2013;56:1835–44.

    Article  CAS  PubMed  Google Scholar 

  69. Ekberg K, Brismar T, Johansson BL, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52:536–41.

    Article  CAS  PubMed  Google Scholar 

  70. Ekberg K, Brismar T, Johansson BL, et al. C-peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30:71–6.

    Article  CAS  PubMed  Google Scholar 

  71. Ziegler D, Movsesyan L, Mankovsky B, et al. Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients. Diabetes Care. 2009;32:1479–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Chan YC, Lo YL, Chan ES. Immunotherapy for diabetic amyotrophy. Cochrane Database Syst Rev. 2012;6, CD006521. This is an excellent review highlighting the limited number of controlled studies of DRPN treatments.

    PubMed  Google Scholar 

  73. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817–24.

    Article  CAS  PubMed  Google Scholar 

  74. Barohn RJ, Sahenk Z, Warmolts JR, et al. The Bruns-Garland syndrome (diabetic amyotrophy). Revisited 100 years later. Arch Neurol. 1991;48:1130–5.

    Article  CAS  PubMed  Google Scholar 

  75. Taylor BV, Dunne JW. Diabetic amyotrophy progressing to severe quadriparesis. Muscle Nerve. 2004;30:505–9.

    Article  PubMed  Google Scholar 

  76. Massie R, Mauermann ML, Staff NP, et al. Diabetic cervical radiculoplexus neuropathy: a distinct syndrome expanding the spectrum of diabetic radiculoplexus neuropathies. Brain. 2012;135:10–88.

    Article  Google Scholar 

  77. Younger DS. Diabetic lumbosacral radiculoplexus neuropathy: a postmortem studied patient and review of the literature. J Neurol. 2011;258:1364–7. This is a case report of DRPN, but one of the few to include a postmortem evaluation.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Wada Y, Yanagihara C, Nishimura Y, et al. A case of diabetic amyotrophy with severe atrophy and weakness of shoulder girdle muscles showing good response to intravenous immune globulin. Diabetes Res Clin Pract. 2007;75:107–10.

    Article  PubMed  Google Scholar 

  79. Donofrio PD, Berger A, Brannagan III TH, et al. Consensus statement: the use of intravenous immunoglobulin in the treatment of neuromuscular conditions report of the AANEM ad hoc committee. Muscle Nerve. 2009;40:890–900.

    Article  CAS  PubMed  Google Scholar 

  80. Garces-Sanchez M, Laughlin RS, Dyck PJ, et al. Painless diabetic motor neuropathy: a variant of diabetic lumbosacral radiculoplexus Neuropathy? Ann Neurol. 2011;69:1043–54.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Dyck PJ, Windebank AJ. Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve. 2002;25:477–91.

    Article  PubMed  Google Scholar 

  82. Sharma KR, Cross J, Farronay O, et al. Demyelinating neuropathy in diabetes mellitus. Arch Neurol. 2002;59:758–65.

    Article  PubMed  Google Scholar 

  83. De Sousa EA, Chin RL, Sander HW, et al. Demyelinating findings in typical and atypical chronic inflammatory demyelinating polyneuropathy: sensitivity and specificity. J Clin Neuromuscul Dis. 2009;10:163–9.

    Article  PubMed  Google Scholar 

  84. Laughlin RS, Dyck PJ, Melton III LJ, et al. Incidence and prevalence of CIDP and the association of diabetes mellitus. Neurology. 2009;73:39–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Dabby R, Sadeh M, Lampl Y, et al. Acute painful neuropathy induced by rapid correction of serum glucose levels in diabetic patients. Biomed Pharmacother. 2009;63:707–9.

    Article  CAS  PubMed  Google Scholar 

  86. Gemignani F. Acute painful diabetic neuropathy induced by strict glycemic control (“insulin neuritis”): the old enigma is still unsolved. Biomed Pharmacother. 2009;63:249–50.

    Article  PubMed  Google Scholar 

  87. Gibbons CH, Freeman R. Treatment-induced diabetic neuropathy: a reversible painful autonomic neuropathy. Ann Neurol. 2010;67:534–41.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Bril V, England JD, Franklin GM, et al. Evidence-based guideline: treatment of painful diabetic neuropathy. Report of the American Association of Neuromuscular and Electrodiagnostic Medicine, the American Academy of Neurology, and the American Academy of Physical Medicine & Rehabilitation. Muscle Nerve. 2011;43:910–7.

    Article  PubMed  Google Scholar 

  89. Grewal J, Bril V, Lewis GF, et al. Objective evidence for the reversibility of nerve injury in diabetic neuropathic cachexia. Diabetes Care. 2006;29:473–4.

    Article  PubMed  Google Scholar 

  90. Tesfaye S, Malik R, Harris N, et al. Arterio-venous shunting and proliferating new vessels in acute painful neuropathy of rapid glycaemic control (insulin neuritis). Diabetologia. 1996;39:329–35.

    Article  CAS  PubMed  Google Scholar 

  91. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care. 2002;23(Suppl 1):S28–31.

  92. Albers JW, Brown MB, Sima AAF, et al. Frequency of median mononeuropathy in patients with mild diabetic neuropathy in the Early Diabetes Intervention Trial (EDIT). Muscle Nerve. 1996;19:140–6.

    Article  CAS  PubMed  Google Scholar 

  93. Thomsen NO, Cederlund R, Rosen I, et al. Clinical outcomes of surgical release among diabetic patients with carpal tunnel syndrome: prospective follow-up with matched controls. J Hand Surg [Am]. 2009;34:1177–87.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Within the past 36 months, James W. Albers’ institution has received support from Eli Lilly and Company/Amylin Pharmaceuticals for his participation as a clinical investigator in a diabetes drug trial. He has also received personal compensation from Eli Lilly and Company (NZ), an affiliate of Eli Lilly and Company, Alnylam Pharmaceuticals/Veristat, Dow Chemical Company, Dow AgroSciences, and PeriphaGen (formerly Diamyd), and from firms representing these companies. These activities have been as a consultant, data monitoring committee member, advisory board member, or expert witness.

Rodica Pop-Busui’s institution has received grant support from Eli Lilly and Company/Amylin Pharmaceuticals (now Bristol-Myers Squibb) for an investigator-initiated trial testing the effects of exenatide on measures of diabetic neuropathy in which she is the principal investigator, and she receives grant support from the National Heart, Lung, and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, and the American Diabetes Association. She has also received personal compensation from Acorda Therapeutics, Astra Zeneca, and Janssen Pharmaceuticals as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Albers.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, J.W., Pop-Busui, R. Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes. Curr Neurol Neurosci Rep 14, 473 (2014). https://doi.org/10.1007/s11910-014-0473-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0473-5

Keywords

Navigation