Skip to main content
Log in

Understanding Essential Tremor: Progress on the Biological Front

  • Movement Disorders (M Okun, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

For many years, little was written about the underlying biology of ET, despite its high prevalence. Discussions of disease mechanisms were dominated by a focus on tremor physiology. The traditional model of ET, the olivary model, was proposed in the 1970s. The model suffers from several critical problems, and its relevance to ET has been questioned. Recent mechanistic research has focused on the cerebellum. Clinical and neuroimaging studies strongly implicate the importance of this brain region in ET. Recent mechanistic research has been grounded more in tissue-based changes (i.e., postmortem studies of the brain). These studies have collectively and systematically identified a sizable number of changes in the ET cerebellum, and have led to a new model of ET, referred to as the cerebellar degenerative model. Hence, there is a renewed interest in the science behind the biology of ET. How the new understanding of ET will translate into treatment changes is an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010;25(5):534–41.

    Article  PubMed  Google Scholar 

  2. Benito-León J, Bermejo-Pareja F, Morales JM, Vega S, Molina JA. Prevalence of essential tremor in three elderly populations of central Spain. Mov Disord. 2003;18(4):389–94.

    Article  PubMed  Google Scholar 

  3. Hardesty DE, Maraganore DM, Matsumoto JY, Louis ED. Increased risk of head tremor in women with essential tremor: longitudinal data from the Rochester Epidemiology Project. Mov Disord. 2004;19(5):529–33.

    Article  PubMed  Google Scholar 

  4. Louis ED, Rios E, Applegate LM, Hernandez NC, Andrews HF. Jaw tremor: prevalence and clinical correlates in three essential tremor case samples. Mov Disord. 2006;21(11):1872–8.

    Article  PubMed  Google Scholar 

  5. Gitchel GT, Wetzel PA, Baron MS. Slowed saccades and increased square wave jerks in essential tremor. Tremor Other Hyperkinet Mov (N Y). 2013;3.http://tremorjournal.org/article/view/178. Sixty ET patients and 60 age-matched controls were studied using a video-based eye tracker to assess binocular eye position. Oculomotor function was assessed while subjects followed random horizontally and vertically step-displaced targets. In contrast to normally swift onset and efficient acceleration/deceleration movements, saccades in ET patients were characterized by abnormally prolonged latencies and slowed velocity profiles. This study demonstrated the presence of novel oculomotor deficits in patients with ET, which are distinct from the eye movement dysfunctions of other movement disorders. The findings support a role of cerebellar dysfunction in disease pathogenesis.

  6. Louis ED, Galecki M, Rao AK. Four essential tremor cases with moderately impaired gait: how impaired can gait be in this disease? Tremor Other Hyperkinet Mov (N Y). 2013;3.http://tremorjournal.org/article/view/200.

  7. Kronenbuerger M, Konczak J, Ziegler W, et al. Balance and motor speech impairment in essential tremor. Cerebellum. 2009;8(3):389–98.

    Article  PubMed  Google Scholar 

  8. Putzke JD, Whaley NR, Baba Y, Wszolek ZK, Uitti RJ. Essential tremor: predictors of disease progression in a clinical cohort. J Neurol Neurosurg Psychiatry. 2006;77(11):1235–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Louis ED, Agnew A, Gillman A, Gerbin M, Viner AS. Estimating annual rate of decline: prospective, longitudinal data on arm tremor severity in two groups of essential tremor cases. J Neurol Neurosurg Psychiatry. 2011;82(7):761–5.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Louis ED, Ford B, Frucht S, Barnes LF, X-Tang M, Ottman R. Risk of tremor and impairment from tremor in relatives of patients with essential tremor: a community-based family study. Ann Neurol. 2001;49(6):761–9.

    Article  CAS  PubMed  Google Scholar 

  11. Louis ED, Gerbin M, Galecki M. Essential tremor 10, 20, 30, 40: clinical snapshots of the disease by decade of duration. Eur J Neurol. 2013;20(6):949–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Louis ED, Benito-León J, Ottman R, Bermejo-Pareja F. A population-based study of mortality in essential tremor. Neurology. 2007;69(21):1982–9.

    Article  PubMed  Google Scholar 

  13. Benito-León J, Bermejo-Pareja F, Louis ED. Incidence of essential tremor in three elderly populations of central Spain. Neurology. 2005;64(10):1721–5.

    Article  PubMed  Google Scholar 

  14. Louis ED, Thawani SP, Andrews HF. Prevalence of essential tremor in a multiethnic, community-based study in northern Manhattan, New York, N.Y. Neuroepidemiology. 2009;32(3):208–14.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hornabrook RW, Nagurney JT. Essential tremor in Papua, New Guinea. Brain. 1976;99(4):659–72.

    Article  CAS  PubMed  Google Scholar 

  16. Stefansson H, Steinberg S, Petursson H, et al. Variant in the sequence of the LINGO1 gene confers risk of essential tremor. Nat Genet. 2009;41(3):277–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Thier S, Lorenz D, Nothnagel M, et al. Polymorphisms in the glial glutamate transporter SLC1A2 are associated with essential tremor. Neurology. 2012;79(3):243–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Testa CM. Key issues in essential tremor genetics research: where are we now and how can we move forward? Tremor Other Hyperkinet Mov (N Y). 2013; 3:http://tremorjournal.org/article/view/105. Genetics research is an avenue towards understanding ET. Advances have been made in genetic linkage and association; however, causal mutations have not been forthcoming. This disappointing lack of progress has opened productive discussions on the challenges in ET research and, more specifically, ET genetics research, including fundamental assumptions in the field. The article discusses several inherent features of ET that complicate genetic linkage and association studies.

  19. Louis ED. Environmental epidemiology of essential tremor. Neuroepidemiology. 2008;31(3):139–49.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Louis ED, Benito-León J, Moreno-García S, et al. Blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentration in essential tremor cases in Spain. Neurotoxicology. 2013;34:264–8. Environmental correlates for ET are largely unexplored. Harmane is a potent tremor-producing neurotoxin found in the diet. In this study, blood harmane concentrations were quantified by a well-established high-performance liquid chromatography method, and the median harmane concentrations were higher a group of 62 familial ET patients compared with a group of 138 controls, suggesting that this neurotoxin could be an etiological agent of interest in ET.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Louis ED, Benito-León J, Bermejo-Pareja F. Population-based study of baseline ethanol consumption and risk of incident essential tremor. J Neurol Neurosurg Psychiatry. 2009;80(5):494–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Louis ED. ‘Essential tremor’ or ‘the essential tremors’: is this one disease or a family of diseases? Neuroepidemiology. 2013;42(2):81–9.

    Article  PubMed  Google Scholar 

  23. Louis ED. Essential tremors: a family of neurodegenerative disorders? Arch Neurol. 2009;66(10):1202–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Louis ED. Essential tremor and other forms of kinetic tremor. In: Grimaldi G, Manto M, editors. Mechanisms and emerging therapies in tremor disorders. New York: Springer; 2013. p. 167–201.

    Chapter  Google Scholar 

  25. Louis ED. Re-thinking the biology of essential tremor: from models to morphology. Parkinsonism Relat Disord. 2014;20 Suppl 1:S88–93.

    Article  PubMed  Google Scholar 

  26. Benito-León J, Louis ED. The top 100 cited articles in essential tremor. Tremor Other Hyperkinet Mov (N Y). 2013;3:http://tremorjournal.org/article/view/186.

  27. DeLong MR. Possible involvement of central pacemakers in clinical disorders of movement. Fed Proc. 1978;37(8):2171–5.

    CAS  PubMed  Google Scholar 

  28. Deuschl G, Elble RJ. The pathophysiology of essential tremor. Neurology. 2000;54 Suppl 4:S14–20.

    CAS  PubMed  Google Scholar 

  29. Llinás R, Volkind RA. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973;18(1):69–87.

    Article  PubMed  Google Scholar 

  30. Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov (N Y). 2012;2:http://tremorjournal.org/article/view/92.

  31. Louis ED. From neurons to neuron neighborhoods: the rewiring of the cerebellar cortex in essential tremor. Cerebellum. 2014. doi:10.1007/s12311-013-0545-0.

    Google Scholar 

  32. Martin FC, Le Thu A, Handforth A. Harmaline-induced tremor as a potential preclinical screening method for essential tremor medications. Mov Disord. 2005;20(3):298–305.

    Article  PubMed  Google Scholar 

  33. Handforth A, Krahl SE. Suppression of harmaline-induced tremor in rats by vagus nerve stimulation. Mov Disord. 2001;16(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  34. O'Hearn E, Molliver ME. The olivocerebellar projection mediates ibogaine-induced degeneration of Purkinje cells: a model of indirect, trans-synaptic excitotoxicity. J Neurosci. 1997;17(22):8828–41.

    PubMed  Google Scholar 

  35. O'Hearn E, Molliver ME. Administration of a non-NMDA antagonist, GYKI 52466, increases excitotoxic Purkinje cell degeneration caused by ibogaine. Neuroscience. 2004;127(2):373–83.

    Article  PubMed  Google Scholar 

  36. Elble RJ. Animal models of action tremor. Mov Disord. 1998;13 Suppl 3:35–9.

    PubMed  Google Scholar 

  37. Louis ED. Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol. 2010;9(6):613–22.

    Article  PubMed  Google Scholar 

  38. de Oliveira RB, Howlett MC, Gravina FS, et al. Pacemaker currents in mouse locus coeruleus neurons. Neuroscience. 2010;170(1):166–77.

    Article  PubMed  Google Scholar 

  39. Penington NJ, Tuckwell HC. Properties of IA in a neuron of the dorsal raphe nucleus. Brain Res. 2012;1449:60–8.

    Article  CAS  PubMed  Google Scholar 

  40. Jahnsen H, Llinás R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 1984;349:227–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hansen ST, Meera P, Otis TS, Pulst SM. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet. 2013;22(2):271–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. Ann Neurol. 1994;36(4):636–42.

    Article  CAS  PubMed  Google Scholar 

  43. Louis ED, Babij R, Cortés E, Vonsattel JP, Faust PL. The inferior olivary nucleus: a postmortem study of essential tremor cases versus controls. Mov Disord. 2013;28(6):779–86.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Hubble JP, Busenbark KL, Pahwa R, Lyons K, Koller WC. Clinical expression of essential tremor: effects of gender and age. Mov Disord. 1997;12(6):969–72.

    Article  CAS  PubMed  Google Scholar 

  45. Parisi SL, Héroux ME, Culham EG, Norman KE. Functional mobility and postural control in essential tremor. Arch Phys Med Rehabil. 2006;87(10):1357–64.

    Article  PubMed  Google Scholar 

  46. Louis ED, Rios E, Rao AK. Tandem gait performance in essential tremor: clinical correlates and association with midline tremors. Mov Disord. 2010;25(11):1633–8.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Rao AK, Gillman A, Louis ED. Quantitative gait analysis in essential tremor reveals impairments that are maintained into advanced age. Gait Posture. 2011;34(1):65–70.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Deuschl G, Wenzelburger R, Löffler K, Raethjen J, Stolze H. Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain. 2000;123(8):1568–80.

    Article  PubMed  Google Scholar 

  49. Leegwater-Kim J, Louis ED, Pullman SL, et al. Intention tremor of the head in patients with essential tremor. Mov Disord. 2006;21(11):2001–5.

    Article  PubMed  Google Scholar 

  50. Avanzino L, Bove M, Tacchino A, et al. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci. 2009;30(10):1971–9.

    Article  PubMed  Google Scholar 

  51. Trillenberg P, Führer J, Sprenger A, et al. Eye-hand coordination in essential tremor. Mov Disord. 2006;21(3):373–9.

    Article  PubMed  Google Scholar 

  52. Bares M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.

    Article  PubMed  Google Scholar 

  53. Farkas Z, Szirmai I, Kamondi A. Impaired rhythm generation in essential tremor. Mov Disord. 2006;21(8):1196–9.

    Article  PubMed  Google Scholar 

  54. Dupuis MJ, Delwaide PJ, Boucquey D, Gonsette RE. Homolateral disappearance of essential tremor after cerebellar stroke. Mov Disord. 1989;4(2):183–7.

    Article  CAS  PubMed  Google Scholar 

  55. Rajput AH, Maxood K, Rajput A. Classic essential tremor changes following cerebellar hemorrhage. Neurology. 2008;71(21):1739–40.

    Article  PubMed  Google Scholar 

  56. Schuurman PR, Bosch DA, Bossuyt PM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342(7):461–8.

    Article  CAS  PubMed  Google Scholar 

  57. Benabid AL, Pollak P, Seigneuret E, Hoffmann D, Gay E, Perret J. Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien). 1993;58:39–44.

    CAS  Google Scholar 

  58. Passamonti L, Cerasa A, Quattrone A. Neuroimaging of essential tremor: what is the evidence for cerebellar involvement? Tremor Other Hyperkinet Mov (N Y). 2012;2:http://tremorjournal.org/article/view/67 . The authors discussed the neuroimaging research investigating the brain structure and function of ET patients relative to healthy controls. They concluded that current neuroimaging research provides converging evidence for the role of the cerebellum in the pathophysiology of ET, although some inconsistencies exist, particularly in structural studies. These inconsistencies may depend on the high clinical heterogeneity of ET as well as on differences among the experimental methods used across studies.

  59. Bucher SF, Seelos KC, Dodel RC, Reiser M, Oertel WH. Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol. 1997;41(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  60. Jenkins IH, Bain PG, Colebatch JG, et al. A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol. 1993;34(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  61. Colebatch JG, Findley LJ, Frackowiak RS, Marsden CD, Brooks DJ. Preliminary report: activation of the cerebellum in essential tremor. Lancet. 1990;336(8722):1028–30.

    Article  CAS  PubMed  Google Scholar 

  62. Louis ED, Shungu DC, Chan S, Mao X, Jurewicz EC, Watner D. Metabolic abnormality in the cerebellum in patients with essential tremor: a proton magnetic resonance spectroscopic imaging study. Neurosci Lett. 2002;333(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  63. Pagan FL, Butman JA, Dambrosia JM, Hallett M. Evaluation of essential tremor with multi-voxel magnetic resonance spectroscopy. Neurology. 2003;60(8):1344–7.

    Article  PubMed  Google Scholar 

  64. Shin DH, Han BS, Kim HS, Lee PH. Diffusion tensor imaging in patients with essential tremor. AJNR Am J Neuroradiol. 2008;29(1):151–3.

    Article  CAS  PubMed  Google Scholar 

  65. Klein JC, Lorenz B, Kang JS, et al. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp. 2011;32(6):896–904.

    Article  PubMed  Google Scholar 

  66. Nicoletti G, Manners D, Novellino F, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology. 2010;74(12):988–94.

    Article  CAS  PubMed  Google Scholar 

  67. Benito-León J, Alvarez-Linera J, Hernández-Tamames JA, Alonso-Navarro H, Jiménez-Jiménez FJ, Louis ED. Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla. J Neurol Sci. 2009;287(1–2):138–42.

    Article  PubMed  Google Scholar 

  68. Quattrone A, Cerasa A, Messina D, et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol. 2008;29(9):1692–7.

    Article  CAS  PubMed  Google Scholar 

  69. Cerasa A, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. AJNR Am J Neuroradiol. 2009;30(6):1240–3.

    Article  CAS  PubMed  Google Scholar 

  70. Yu M, Ma K, Faust PL, et al. Increased number of Purkinje cell dendritic swellings in essential tremor. Eur J Neurol. 2012;19(4):625–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Axelrad JE, Louis ED, Honig LS, et al. Reduced Purkinje cell number in essential tremor: a postmortem study. Arch Neurol. 2008;65(1):101–7.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Louis ED, Faust PL, Vonsattel JP, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain. 2007;130(12):3297–307.

    Article  PubMed  Google Scholar 

  73. Kuo SH, Erickson-Davis C, Gillman A, Faust PL, Vonsattel JP, Louis ED. Increased number of heterotopic Purkinje cells in essential tremor. J Neurol Neurosurg Psychiatry. 2011;82(9):1038–40.

    Article  PubMed  Google Scholar 

  74. Erickson-Davis CR, Faust PL, Vonsattel JP, Gupta S, Honig LS, Louis ED. "Hairy baskets" associated with degenerative Purkinje cell changes in essential tremor. J Neuropathol Exp Neurol. 2010;69(3):262–71.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Kuo SH, Tang G, Louis ED, et al. Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol. 2013;125(6):879–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Shill HA, Adler CH, Sabbagh MN, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology. 2008;70(16 Pt 2):1452–5.

    Article  CAS  PubMed  Google Scholar 

  77. Rajput A, Robinson CA, Rajput AH. Essential tremor course and disability: A clinicopathologic study of 20 cases. Neurology. 2004;62(6):932–6.

    Article  PubMed  Google Scholar 

  78. Critchley M, Greenfield JG. Olivo-ponto-cerebellar atrophy. Brain. 1948;71:343–64.

    Article  Google Scholar 

  79. Louis ED, Yi H, Erickson-Davis C, Vonsattel JP, Faust PL. Structural study of Purkinje cell axonal torpedoes in essential tremor. Neurosci Lett. 2009;450(3):287–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Louis ED, Ma K, Babij R, et al. Neurofilament protein levels: quantitative analysis in essential tremor cerebellar cortex. Neurosci Lett. 2012;518(1):49–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Grimaldi G, Manto M. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord. 2013;28(13):1759–61.

    Article  PubMed  Google Scholar 

  82. Liem RK, Leung CL. Neuronal intermediate filament overexpression and neurodegeneration in transgenic mice. Exp Neurol. 2003;184(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  83. Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001;2(11):806–19.

    Article  CAS  PubMed  Google Scholar 

  84. Robertson J, Kriz J, Nguyen MD, Julien JP. Pathways to motor neuron degeneration in transgenic mouse models. Biochimie. 2002;84(11):1151–60.

    Article  CAS  PubMed  Google Scholar 

  85. Rossi F, Jankovski A, Sotelo C. Differential regenerative response of Purkinje cell and inferior olivary axons confronted with embryonic grafts: environmental cues versus intrinsic neuronal determinants. J Comp Neurol. 1995;359(4):663–77.

    Article  CAS  PubMed  Google Scholar 

  86. Bravin M, Savio T, Strata P, Rossi F. Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats. Eur J Neurosci. 1997;9(12):2634–49.

    Article  CAS  PubMed  Google Scholar 

  87. Dusart I, Sotelo C. Lack of Purkinje cell loss in adult rat cerebellum following protracted axotomy: degenerative changes and regenerative attempts of the severed axons. J Comp Neurol. 1994;347(2):211–32.

    Article  CAS  PubMed  Google Scholar 

  88. Chan-Palay V. The recurrent collaterals of Purkinje cell axons: a correlated study of the rat's cerebellar cortex with electron microscopy and the Golgi method. Z Anat Entwicklungsgesch. 1971;134(2):200–34.

    Article  CAS  PubMed  Google Scholar 

  89. Dusart I, Morel MP, Wehrlé R, Sotelo C. Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol. 1999;408(3):399–418.

    Article  CAS  PubMed  Google Scholar 

  90. Carulli D, Buffo A, Strata P. Reparative mechanisms in the cerebellar cortex. Prog Neurobiol. 2004;72(6):373–98.

    Article  CAS  PubMed  Google Scholar 

  91. Rossi F, Jankovski A, Sotelo C. Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci. 1995;15(3 Pt 1):2040–56.

    CAS  PubMed  Google Scholar 

  92. Babij R, Lee M, Cortés E, Vonsattel JP, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain. 2013;136(10):3051–61. The authors performed a detailed morphological analysis of the Purkinje cell axonal compartment in 49 ET and 39 control brains, using calbindin D28k immunohistochemistry on 100-μm cerebellar cortical vibratome tissue sections. They documented a range of changes in the Purkinje cell axonal compartment in ET. Several of these changes are likely to be compensatory changes in response to Purkinje cell injury, thus illustrating an important feature of Purkinje cells, which is that they are relatively resistant to damage and are capable of mobilizing a broad range of axonal responses to injury.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Mentis GZ, Díaz E, Moran LB, Navarrete R. Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy. J Physiol. 2007;582(3):1141–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Ma WY, Vacca-Galloway LL. Reduced branching and length of dendrites detected in cervical spinal cord motoneurons of Wobbler mouse, a model for inherited motoneuron disease. J Comp Neurol. 1991;311(2):210–22.

    Article  CAS  PubMed  Google Scholar 

  95. March PA, Thrall MA, Brown DE, Mitchell TW, Lowenthal AC, Walkley SU. GABAergic neuroaxonal dystrophy and other cytopathological alterations in feline Niemann-Pick disease type C. Acta Neuropathol. 1997;94(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  96. Sasaki S, Iwata M. Dendritic synapses of anterior horn neurons in amyotrophic lateral sclerosis: an ultrastructural study. Acta Neuropathol. 1996;91(3):278–83.

    Article  CAS  PubMed  Google Scholar 

  97. Rossi F, Borsello T, Strata P. Exposure to kainic acid mimics the effects of axotomy in cerebellar Purkinje cells of the adult rat. Eur J Neurosci. 1994;6(3):392–402.

    Article  CAS  PubMed  Google Scholar 

  98. Louis ED, Mazzoni P, Ma KJ, et al. Essential tremor with ubiquitinated intranuclear inclusions and cerebellar degeneration. Clin Neuropathol. 2012;31(3):119–26.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Louis ED, Faust PL, Vonsattel JP. Purkinje cell loss is a characteristic of essential tremor: towards a more mature understanding of pathogenesis. Parkinsonism Relat Disord. 2012;18(8):1003–4.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Elan D. Louis declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elan D. Louis.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, E.D. Understanding Essential Tremor: Progress on the Biological Front. Curr Neurol Neurosci Rep 14, 450 (2014). https://doi.org/10.1007/s11910-014-0450-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0450-z

Keywords

Navigation