Skip to main content

Advertisement

Log in

Phenotypic Spectrum of Glucose Transporter Type 1 Deficiency Syndrome (Glut1 DS)

  • Pediatric Neurology (D Nordli, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Glut1 deficiency syndrome (Glut1 DS) was originally described in 1991 as a developmental encephalopathy characterized by infantile onset refractory epilepsy, cognitive impairment, and mixed motor abnormalities including spasticity, ataxia, and dystonia. The clinical condition is caused by impaired glucose transport across the blood brain barrier. The past 5 years have seen a dramatic expansion in the range of clinical syndromes that are recognized to occur with Glut1 DS. In particular, there has been greater recognition of milder phenotypes. Absence epilepsy and other idiopathic generalized epilepsy syndromes may occur with seizure onset in childhood or adulthood. A number of patients present predominantly with movement disorders, sometimes without any accompanying seizures. In particular, paroxysmal exertional dyskinesia is now a well-documented clinical feature that occurs in individuals with Glut1 DS. A clue to the diagnosis in patients with paroxysmal symptoms may be the triggering of episodes during fasting or exercise. Intellectual impairment may range from severe to very mild. Awareness of the broad range of potential clinical phenotypes associated with Glut1 DS will facilitate earlier diagnosis of this treatable neurologic condition. The ketogenic diet is the mainstay of treatment and nourishes the starving symptomatic brain during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2007;27(11):1766–91. doi:10.1038/sj.jcbfm.9600521.

    Article  CAS  Google Scholar 

  2. Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27(2):184–8. doi:10.1006/pmed.1998.0274.

    Article  PubMed  CAS  Google Scholar 

  3. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–9. doi:10.1056/NEJM199109053251006.

    Article  PubMed  Google Scholar 

  4. Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet. 1998;18(2):188–91. doi:10.1038/ng0298-188.

    Article  PubMed  CAS  Google Scholar 

  5. Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40(5):207–10. doi:10.1055/s-0030-1248264.

    Article  PubMed  CAS  Google Scholar 

  6. •• Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68(6):955–8. doi:10.1002/ana.22088. This article describes 2 patients with Glut1 DS as an autosomal recessive trait, demonstrating that the severity of the clinical syndrome was determined by the relative pathogenicity of the mutations and the resulting degree of haploinsufficiency. This illustrates an important principle that applies to all patients with Glut1DS.

    Article  PubMed  Google Scholar 

  7. •• Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70. doi:10.1093/brain/awp336. This articles describes the genetic and clinical features of a series of 57 patients with Glut1 DS, outlining the broad range of possible clinical syndromes, including patients with seizure onset at an older age and patients without epilepsy.

    Article  PubMed  Google Scholar 

  8. •• Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70(6):996–1005. doi:10.1002/ana.22640. This study validated the erythrocyte glucose uptake assay as a confirmatory functional diagnostic test, and as a surrogate marker of residual Glut1 activity which correlates with clinical severity.

    Article  PubMed  CAS  Google Scholar 

  9. De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol. 2002;17 Suppl 3:3S15–23. discussion 3S4-5.

    PubMed  Google Scholar 

  10. Leary LD, Wang D, Nordli Jr DR, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia. 2003;44(5):701–7.

    Article  PubMed  Google Scholar 

  11. • Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53(9):1503–10. doi:10.1111/j.1528-1167.2012.03592.x. This retrospective study details the epilepsy phenotypes and treatment response to the ketogenic diet and anticonvulsant mediations in 87 patients with Glut1 DS. Also found was a significant lag in diagnosis, with mean age at seizure onset of 8 months to mean age at diagnosis of 5 years.

    Article  PubMed  CAS  Google Scholar 

  12. Suls A, Mullen SA, Weber YG, Verhaert K, Ceulemans B, Guerrini R, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol. 2009;66(3):415–9. doi:10.1002/ana.21724.

    Article  PubMed  CAS  Google Scholar 

  13. •• Mullen SA, Suls A, De Jonghe P, Berkovic SF, Scheffer IE. Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology. 2010;75(5):432–40. doi:10.1212/WNL.0b013e3181eb58b4. The authors describe the variety of epilepsy syndromes observed in 2 kindreds (12 individuals) with SLC2A1 mutations, including idiopathic generalized epilepsy with absence, myoclonic-astatic, and focal seizures. These represent milder forms of epilepsy than were previously associated with Glut1 DS.

    Article  PubMed  CAS  Google Scholar 

  14. Afawi Z, Suls A, Ekstein D, Kivity S, Neufeld MY, Oliver K, et al. Mild adolescent/adult onset epilepsy and paroxysmal exercise-induced dyskinesia due to GLUT1 deficiency. Epilepsia. 2010;51(12):2466–9. doi:10.1111/j.1528-1167.2010.02726.x.

    Article  PubMed  Google Scholar 

  15. Striano P, Weber YG, Toliat MR, Schubert J, Leu C, Chaimana R, et al. GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology. 2012;78(8):557–62. doi:10.1212/WNL.0b013e318247ff54.

    Article  PubMed  CAS  Google Scholar 

  16. Mullen SA, Marini C, Suls A, Mei D, Della Giustina E, Buti D, et al. Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol. 2011;68(9):1152–5. doi:10.1001/archneurol.2011.102.

    Article  PubMed  Google Scholar 

  17. Akman CI, Engelstad K, Hinton VJ, Ullner P, Koenigsberger D, Leary L, et al. Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency. Ann Neurol. 2010;67(1):31–40. doi:10.1002/ana.21797.

    Article  PubMed  CAS  Google Scholar 

  18. Lindgren KA, Larson CL, Schaefer SM, Abercrombie HC, Ward RT, Oakes TR, et al. Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biol Psychiatry. 1999;45(8):943–52.

    Article  PubMed  CAS  Google Scholar 

  19. Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E. Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol. 2005;93(5):2864–72. doi:10.1152/jn.00721.2004.

    Article  PubMed  Google Scholar 

  20. Goldman RI, Stern JM, Engel Jr J, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport. 2002;13(18):2487–92. doi:10.1097/01.wnr.0000047685.08940.d0.

    Article  PubMed  Google Scholar 

  21. Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, Mann K, Siessmeier T, Buchholz HG, et al. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. Neuroimage. 2004;22(2):637–44. doi:10.1016/j.neuroimage.2004.01.047.

    Article  PubMed  Google Scholar 

  22. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64. doi:10.1002/ana.10311.

    Article  PubMed  CAS  Google Scholar 

  23. Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatry. 2005;11(4):357–72. doi:10.1177/1073858405277450.

    Google Scholar 

  24. Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC. GLUT1-deficiency: barbiturates potentiate haploinsufficiency in vitro. Pediatr Res. 1999;46(6):677–83.

    Article  PubMed  CAS  Google Scholar 

  25. von Moers A, Brockmann K, Wang D, Korenke CG, Huppke P, De Vivo DC, et al. EEG features of glut-1 deficiency syndrome. Epilepsia. 2002;43(8):941–5.

    Article  Google Scholar 

  26. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81. doi:10.1002/mds.22808.

    Article  PubMed  Google Scholar 

  27. Overweg-Plandsoen WC, Groener JE, Wang D, Onkenhout W, Brouwer OF, Bakker HD, et al. GLUT-1 deficiency without epilepsy–an exceptional case. J Inherit Metab Dis. 2003;26(6):559–63.

    Article  PubMed  CAS  Google Scholar 

  28. Friedman JR, Thiele EA, Wang D, Levine KB, Cloherty EK, Pfeifer HH, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21(2):241–5. doi:10.1002/mds.20660.

    Article  PubMed  Google Scholar 

  29. Perez-Duenas B, Prior C, Ma Q, Fernandez-Alvarez E, Setoain X, Artuch R, et al. Childhood chorea with cerebral hypotrophy: a treatable GLUT1 energy failure syndrome. Arch Neurol. 2009;66(11):1410–4. doi:10.1001/archneurol.2009.236.

    Article  PubMed  Google Scholar 

  30. Klepper J, Engelbrecht V, Scheffer H, van der Knaap MS, Fiedler A. GLUT1 deficiency with delayed myelination responding to ketogenic diet. Pediatr Neurol. 2007;37(2):130–3. doi:10.1016/j.pediatrneurol.2007.03.009.

    Article  PubMed  Google Scholar 

  31. Joshi C, Greenberg CR, De Vivo D, Dong W, Chan-Lui W, Booth FA. GLUT1 deficiency without epilepsy: yet another case. J Child Neurol. 2008;23(7):832–4. doi:10.1177/0883073808314896.

    Article  PubMed  Google Scholar 

  32. Koy A, Assmann B, Klepper J, Mayatepek E. Glucose transporter type 1 deficiency syndrome with carbohydrate-responsive symptoms but without epilepsy. Dev Med Child Neurol. 2011;53(12):1154–6. doi:10.1111/j.1469-8749.2011.04082.x.

    Article  PubMed  Google Scholar 

  33. Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2(4):285–93. doi:10.1002/ana.410020405.

    Article  PubMed  CAS  Google Scholar 

  34. Plant GT, Williams AC, Earl CJ, Marsden CD. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry. 1984;47(3):275–9.

    Article  PubMed  CAS  Google Scholar 

  35. Nardocci N, Lamperti E, Rumi V, Angelini L. Typical and atypical forms of paroxysmal choreoathetosis. Dev Med Child Neurol. 1989;31(5):670–4.

    Article  PubMed  CAS  Google Scholar 

  36. Bhatia KP, Soland VL, Bhatt MH, Quinn NP, Marsden CD. Paroxysmal exercise-induced dystonia: eight new sporadic cases and a review of the literature. Mov Disord. 1997;12(6):1007–12. doi:10.1002/mds.870120626.

    Article  PubMed  CAS  Google Scholar 

  37. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44. doi:10.1093/brain/awn113.

    Article  PubMed  Google Scholar 

  38. •• Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68. doi:10.1172/JCI34438. The authors identified a SLC2A1 mutation in members of a family with paroxysmal exertional dyskinesia (PED), epilepsy, mild developmental delay, and hemolytic anemia, and demonstrated that a cation leak in the red cell membrane caused by the mutant Glut1 protein was the mechanism underlying the hemolytic anemia. They also identified SLC2A1 mutations in 2 other families with PED and epilepsy.

    PubMed  CAS  Google Scholar 

  39. Bovi T, Fasano A, Juergenson I, Gellera C, Castellotti B, Fontana E, et al. Paroxysmal exercise-induced dyskinesia with self-limiting partial epilepsy: a novel GLUT-1 mutation with benign phenotype. Parkinsonism Relat Disord. 2011;17(6):479–81. doi:10.1016/j.parkreldis.2011.03.015.

    Article  PubMed  Google Scholar 

  40. Schneider SA, Paisan-Ruiz C, Garcia-Gorostiaga I, Quinn NP, Weber YG, Lerche H, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24(11):1684–8. doi:10.1002/mds.22507.

    Article  PubMed  Google Scholar 

  41. Auburger G, Ratzlaff T, Lunkes A, Nelles HW, Leube B, Binkofski F, et al. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197. Genomics. 1996;31(1):90–4. doi:10.1006/geno.1996.0013.

    Article  PubMed  CAS  Google Scholar 

  42. Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schule R, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64. doi:10.1212/WNL.0b013e31822e0479.

    Article  PubMed  CAS  Google Scholar 

  43. Zorzi G, Castellotti B, Zibordi F, Gellera C, Nardocci N. Paroxysmal movement disorders in GLUT1 deficiency syndrome. Neurology. 2008;71(2):146–8. doi:10.1212/01.wnl.0000316804.10020.ba.

    Article  PubMed  CAS  Google Scholar 

  44. Rotstein M, Doran J, Yang H, Ullner PM, Engelstad K, De Vivo DC. Glut1 deficiency and alternating hemiplegia of childhood. Neurology. 2009;73(23):2042–4. doi:10.1212/WNL.0b013e3181c55ebf.

    Article  PubMed  CAS  Google Scholar 

  45. Urbizu A, Cuenca-Leon E, Raspall-Chaure M, Gratacos M, Conill J, Redecillas S, et al. Paroxysmal exercise-induced dyskinesia, writer's cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295(1–2):110–3. doi:10.1016/j.jns.2010.05.017.

    Article  PubMed  CAS  Google Scholar 

  46. Ito Y, Oguni H, Ito S, Oguni M, Osawa M. A modified Atkins diet is promising as a treatment for glucose transporter type 1 deficiency syndrome. Dev Med Child Neurol. 2011;53(7):658–63. doi:10.1111/j.1469-8749.2011.03961.x.

    Article  PubMed  Google Scholar 

  47. Liu Y, Bao X, Wang D, Fu N, Zhang X, Cao G, et al. Allelic variations of Glut-1 deficiency syndrome: the Chinese experience. Pediatr Neurol. 2012;47(1):30–4. doi:10.1016/j.pediatrneurol.2012.04.010.

    Article  PubMed  Google Scholar 

  48. Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(5):302–8. doi:10.1055/s-2005-872843.

    Article  PubMed  CAS  Google Scholar 

  49. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57(1):111–8. doi:10.1002/ana.20331.

    Article  PubMed  CAS  Google Scholar 

  50. Pascual JM, Wang D, Hinton V, Engelstad K, Saxena CM, Van Heertum RL, et al. Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch Neurol. 2007;64(4):507–13. doi:10.1001/archneur.64.4.noc60165.

    Article  PubMed  Google Scholar 

  51. Flatt JF, Guizouarn H, Burton NM, Borgese F, Tomlinson RJ, Forsyth RJ, et al. Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood. 2011;118(19):5267–77. doi:10.1182/blood-2010-12-326645.

    Article  PubMed  CAS  Google Scholar 

  52. Bawazir WM, Gevers EF, Flatt JF, Ang AL, Jacobs B, Oren C, et al. An infant with pseudohyperkalemia, hemolysis, and seizures: cation-leaky GLUT1-deficiency syndrome due to a SLC2A1 mutation. J Clin Endocrinol Metab. 2012;97(6):E987–93. doi:10.1210/jc.2012-1399.

    Article  PubMed  CAS  Google Scholar 

  53. Zheng PP, Romme E, van der Spek PJ, Dirven CM, Willemsen R, Kros JM. Defect of development of ocular vasculature in Glut1/SLC2A1 knockdown in vivo. Cell Cycle. 2011;10(11):1871–2.

    Article  PubMed  CAS  Google Scholar 

  54. Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology. 2004;62(8):1297–302.

    Article  PubMed  CAS  Google Scholar 

  55. • Levy B, Wang D, Ullner PM, Engelstad K, Yang H, Nahum O, et al. Uncovering microdeletions in patients with severe Glut-1 deficiency syndrome using SNP oligonucleotide microarray analysis. Mol Genet Metab. 2010;100(2):129–35. doi:10.1016/j.ymgme.2010.03.007. The authors describe 7 children with Glut-1 DS caused by microdeletions in the SLC2A1 region, who all had a severe clinical syndrome.

    Article  PubMed  CAS  Google Scholar 

  56. Barros LF, Bittner CX, Loaiza A, Porras OH. A quantitative overview of glucose dynamics in the gliovascular unit. Glia. 2007;55(12):1222–37. doi:10.1002/glia.20375.

    Article  PubMed  CAS  Google Scholar 

  57. Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, et al. A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet. 2006;15(7):1169–79. doi:10.1093/hmg/ddl032.

    Article  PubMed  CAS  Google Scholar 

  58. Jensen PJ, Gitlin JD, Carayannopoulos MO. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem. 2006;281(19):13382–7. doi:10.1074/jbc.M601881200.

    Article  PubMed  CAS  Google Scholar 

  59. Gramer G, Wolf NI, Vater D, Bast T, Santer R, Kamsteeg EJ, et al. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood. Neuropediatrics. 2012;43(3):168–71. doi:10.1055/s-0032-1315433.

    Article  PubMed  CAS  Google Scholar 

  60. De Vivo DC, Bohan TP, Coulter DL, Dreifuss FE, Greenwood RS, Nordli Jr DR, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia. 1998;39(11):1216–25.

    Article  PubMed  Google Scholar 

  61. Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, et al. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes. 2001;50(6):1464–71.

    Article  PubMed  CAS  Google Scholar 

  62. Anheim M, Maillart E, Vuillaumier-Barrot S, Flamand-Rouviere C, Pineau F, Ewenczyk C, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency. J Neurol. 2011;258(2):316–7. doi:10.1007/s00415-010-5702-5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Colleen Giblin Foundation, the Will Foundation, Milestones for Children, and USPHS grant 5R01NS37949 (NINDS, dcd).

Disclosure

Toni S. Pearson declares no conflict of interest. Cigdem Akman declares no conflict of interest. Veronica J. Hinton declares no conflict of interest. Kristin Engelstad declares no conflict of interest. Darryl C. De Vivo declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl C. De Vivo.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, T.S., Akman, C., Hinton, V.J. et al. Phenotypic Spectrum of Glucose Transporter Type 1 Deficiency Syndrome (Glut1 DS). Curr Neurol Neurosci Rep 13, 342 (2013). https://doi.org/10.1007/s11910-013-0342-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0342-7

Keywords

Navigation