Skip to main content

Advertisement

Log in

New autosomal recessive cerebellar ataxias with oculomotor apraxia

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Autosomal recessive cerebellar ataxias (ARCAs) are a phenotypically and genetically heterogeneous group of diseases. Recently, a subgroup of ARCA associated with oculomotor apraxia (AOA) has been delineated. It includes at least four distinct genetic entities: ataxia-telangiectasia, ataxia-telangiectasia-like disorder, and ataxia with oculomotor apraxia type 1 (AOA1) and type 2 (AOA2). The phenotypes share several similarities, and the responsible genes, ATM, MRE11, APTX, and SETX, respectively, are all implicated in DNA break repair. As in many other DNA repair deficiencies, neurodegeneration is a hallmark of these diseases. Recently, the genes for two new autosomal recessive cerebellar ataxias with oculomotor apraxia, AOA1 and AOA2, were identified. Here, we report the phenotypic characteristics, genetic characteristics, and the recent advances concerning AOA1 and AOA2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Dürr A, Cossee M, Agid Y, et al.: Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996, 335:1169–1175.

    Article  PubMed  Google Scholar 

  2. Cogan DG: A type of congenital ocular motor apraxia presenting jerky head movements. Am J Ophthalmol 1953, 36:433–441.

    PubMed  CAS  Google Scholar 

  3. Aicardi J, Barbosa C, Andermann E, et al.: Ataxia-ocular motor apraxia: a syndrome mimicking ataxia-telangiectasia. Ann Neurol 1988, 24:497–502.

    Article  PubMed  CAS  Google Scholar 

  4. Barbot C, Couthino P, Choroa R, et al.: Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 2001, 58:201–205.

    Article  PubMed  CAS  Google Scholar 

  5. Swift M, Heim RA, Lench NJ: Inherited ataxias. In Advances in Neurology, vol 61. Edited by Harding AE, Deufel T. New York: Raven Press; 1993:115–125.

    Google Scholar 

  6. Woods CG, Taylor AM: Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q J Med 1992, 82:169–179.

    PubMed  CAS  Google Scholar 

  7. Savitsky K, Bar-Shira A, Gilad S, et al.: A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science 1995, 268:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell C, Mitui M, Eng L, et al.: ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects. Hum Mutat 2003, 21:80–85.

    Article  PubMed  CAS  Google Scholar 

  9. McKinnon PJ: ATM and ataxia telangiectasia. EMBO Rep 2004, 5:772–776.

    Article  PubMed  CAS  Google Scholar 

  10. Klein C, Wenning GK, Quinn NP, Marsden CD: Ataxia without telangiectasia masquerading as benign herediatry chorea. Mov Disord 1996, 11:217–220.

    Article  PubMed  CAS  Google Scholar 

  11. Stewart GS, Maser RS, Stankovic T, et al.: The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999, 99:577–587.

    Article  PubMed  CAS  Google Scholar 

  12. Klein C, Stewart GS, Quinn NP, Taylor AM: Ataxia without telangiectasia revisited: update on genetic findings in two brothers with an ataxia-telangiectasia-like disorder. Mov Disord 2001, 16:788–789.

    Article  PubMed  CAS  Google Scholar 

  13. Pitts SA, Kullar HS, Stankovic T, et al.: hMRE11: genomic structure and a null mutation identified in a transcript protected from non-sense mediated mRNA decay. Hum Mol Genet 2001, 10:1155–1162.

    Article  PubMed  CAS  Google Scholar 

  14. Delia D, Piane M, Busceni G, et al.: MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasi-like disorder. Hum Mol Genet 2004, 18:2155–2163.

    Article  Google Scholar 

  15. Fernet M, Gribaa M, Salih MA, et al.: Identification and functional consequences of a novel MRE11 mutation affecting ten Saudi Arabian patients with ataxia telangiectasia-like disorder (ATLD). Hum Mol Genet 2005, 14:307–318.

    Article  PubMed  CAS  Google Scholar 

  16. Taylor AM, Groom A, Byrd PJ: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA repair 2004, 3:1219–1225.

    Article  PubMed  CAS  Google Scholar 

  17. Takashima H, Boerkoel CF, John J, et al.: Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002, 32:267–272.

    Article  PubMed  CAS  Google Scholar 

  18. El-Khamisy SF, Saifi GM, Weinfeld M, et al.: Defective DNA single -strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2004, 434:108–113.

    Article  Google Scholar 

  19. Inoue N, Izumi K, Mawatari S, et al.: Ocular motor apraxia and cerebellar degeneration-report of two cases. Clin Neurol 1971, 11:855–861.

    Google Scholar 

  20. Uekawa K, Yuasa T, Kawasaki S, et al.: A hereditary ataxia associated with hypoalbuminemia and hyperlipidemia: a varian form of Friedreich’s disease or a new clinical entity? Clin Neurol 1992, 32:1067–1074.

    CAS  Google Scholar 

  21. Kubota H, Sunohara N, Iwabuchi K, et al.: Familial early onset cerebellar ataxia with hypoalbuminemia. No To Shinkei 1995, 47:289–294.

    PubMed  CAS  Google Scholar 

  22. Fukuhara N, Nakajima T, Sakajiri K, et al.: Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): a new disease. J Neurol Sci 1995, 133:140–151.

    Article  PubMed  CAS  Google Scholar 

  23. Hanihara T, Kubota H, Amano N, et al.: Siblings of early onset cerebellar ataxia with hypoalbuminemia. Rinsho Shinkeigaku 1995, 35:83–86.

    PubMed  CAS  Google Scholar 

  24. Sekijima Y, Ohara S, Nakagawa S, et al.: Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci 1998, 158:30–37.

    Article  PubMed  CAS  Google Scholar 

  25. Tachi N, Kozuka N, Ohya K, et al.: Hereditary cerebellar ataxia with peripheral neuropathy and mental retardation. Eur Neurol 2000, 43:82–87.

    Article  PubMed  CAS  Google Scholar 

  26. Moreira MC, Barbot C, Tachi N, et al.: Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13, and evidence for genetic heterogeneity. Am J Hum Genet 2001, 68:501–508.

    Article  PubMed  CAS  Google Scholar 

  27. Moreira MC, Barbot C, Tachi N, et al.: The gene mutated in ataxia-oculomotor apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nature Genet 2001, 29:189–193. Identification of the APTX gene, aprataxin isoforms, protein expression, and mutations in the Portuguese population.

    Article  PubMed  CAS  Google Scholar 

  28. Date H, Onodera O, Tanaka H, et al.: Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001, 29:184–188. Identification of the APTX gene, aprataxin isoforms, and mutations in Japanese patients.

    Article  PubMed  CAS  Google Scholar 

  29. Tranchant C, Fleury M, Moreira MC, et al.: Phenotypic variability of aprataxin gene mutations. Neurology 2003, 60:868–870. The authors give evidence for intra-familial phenotypic variability in AOA1.

    Article  PubMed  CAS  Google Scholar 

  30. Le Ber I, Moreira MC, Rivaud-Péchoux S, et al.: Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain 2003, 126:2761–2772. Detailed description of the AOA1 phenotype, neuropsychologic, biologic, MRI, and genetic characteristics in the largest series of patients with AOA1.

    Article  PubMed  Google Scholar 

  31. Amouri R, Moreira MC, Zouari M, et al.: Aprataxin gene mutations in Tunisian families. Neurology 2004, 63:928–929.

    PubMed  CAS  Google Scholar 

  32. Criscuolo C, Mancini P, Saccà F, et al.: Ataxia with oculomotor apraxia type 1 in Southern Italy. Neurology 2004, 63:2173–2175.

    PubMed  CAS  Google Scholar 

  33. Shimazaki H, Takiyama Y, Sakoe K, et al.: Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology 2002, 59:590–595.

    PubMed  CAS  Google Scholar 

  34. Sekijima Y, Hashimoto T, Onodera O, et al.: Severe generalized dystonia as a presentation of a patient with aprataxin gene mutation. Mov Disord 2003, 18:1198–1200.

    Article  PubMed  Google Scholar 

  35. Quinzii CM, Kattah AG, Naini A, et al.: Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 2005, 64:539–541.

    PubMed  CAS  Google Scholar 

  36. Hirano M, Nishiwaki T, Kariya S, et al.: Novel splice variants increase molecular diversity of aprataxin, the gene responsible for early-onset ataxia with ocular motor apraxia and hypoalbuminemia. Neurosci Lett 2004, 366:120–125.

    Article  PubMed  CAS  Google Scholar 

  37. Gueven N, Becherel OJ, Kijas AW, et al.: Aprataxin, a novel protein that protects against genotoxic stress. Hum Mol Genet 2004, 13:1081–1093. The authors demonstrate the instability of the mutant aprataxin products and showed that the AOA1 patients’ cells are more sensitive to agents that cause single-strand DNA breaks. This study also provides evidence for an interaction of aprataxin protein with proteins involved in single-strand DNA repair: XRCC1, PAR-P1, and p53.

    Article  PubMed  CAS  Google Scholar 

  38. Clements PM, Breslin C, Deeks ED, et al.: The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair 2004, 3:1493–1502. This study shows that AOA1 patients’ cells lack the cell-cycle checkpoint defects that are characteristic of A-T patient cells, and showed evidence of mild sensitivity to ionizing radiation, hydrogen peroxide, and methyl methansulphonate. Moreover, this study also argues for an interaction of the aprataxin with XRCC1 and XRCC4, involved in DNA break repair.

    Article  PubMed  CAS  Google Scholar 

  39. Hirano M, Furiya Y, Kariya S, et al.: Loss of function mechanism in aprataxin-related early-onset ataxia. Biochem Biophys Res Commun 2004, 322:380–386.

    Article  PubMed  CAS  Google Scholar 

  40. Sano Y, Date H, Igarashi S, et al.: Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann Neurol 2004, 55:241–249. Based on two hybrid and co-immunoprecipitation experiments, the authors demonstrated that the long isoform of aprataxin interacts with XRCC1, a protein involved in single-strand DNA break repair.

    Article  PubMed  CAS  Google Scholar 

  41. Brenner C: Hint, Fhit, and GalT: function, structure, evolution and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 2002, 41:9003–9014.

    Article  PubMed  CAS  Google Scholar 

  42. Bienagowski P, Garrison PN, Hodawadeckar SC, et al.:Adenosine monophosphoraminidase activity of Hint and Hnt1 supports function of Kin28, Ccl1, and Tfb3. J Biol Chem 2002, 277:10852–10860.

    Article  Google Scholar 

  43. Krakowiak A, Pace HC, Blackburn GM, et al.: Biochemical, crystallographic, and mutagenic characterization of hint, the AMP-lysine hydrolase, with novel substrates and inhibitors. J Biol Chem 2004, 279:18711–18716.

    Article  PubMed  CAS  Google Scholar 

  44. Chun HH, Gatti RA: Ataxia-telangiectasia, an evolving phenotype. DNA repair 2004, 3:1187–1196.

    Article  PubMed  CAS  Google Scholar 

  45. Whitehouse CJ, Taylor RM, Thistlethwaite A, et al.: XRRC1 stimulates human polynucleotide kinase activity and damaged termini and accelerates DNA single-strand break repair. Cell 2001, 104:107–117.

    Article  PubMed  CAS  Google Scholar 

  46. Date H, Igarashi S, Sano Y, et al.: The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem Bioph Res Commun 2004, 325:1279–1285.

    Article  CAS  Google Scholar 

  47. Yang C, Maiguel DA, Carrier F, et al.: Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA binding proteins. Nucl Acids Res 2002, 30:2251–2260.

    Article  PubMed  CAS  Google Scholar 

  48. Bomont P, Watanabe M, Gersoni-Barush R, et al.: Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur J Hum Genet 2000, 8:986–990.

    Article  PubMed  CAS  Google Scholar 

  49. Nemeth AH, Bochukova E, Dunne E, et al.: Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J Hum Genet 2000, 67:1320–1326.

    PubMed  CAS  Google Scholar 

  50. Watanabe M, Sugai Y, Concannon P, et al.: Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatin kinase, gamma-globulin and alpha-foetoprotein. Ann Neurol 1998, 44:265–269.

    Article  PubMed  CAS  Google Scholar 

  51. Moreira MC, Klur S, Barbot C, et al.: Autosomal recessive ataxia: a new gene-aprataxin-responsible for ataxia-ocular apraxia 1, and a new locus on chromosome 9q34. Eur J Hum Genet 2002, 10(Suppl 1):272.

    Google Scholar 

  52. Moreira MC, Klur S, Watanabe M, et al.: Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 2004, 36:225–227.

    Article  PubMed  CAS  Google Scholar 

  53. Le Ber I, Bouslam N, Rivaud-Péchoux S, et al.: Frequency and phenotypic spectrum of ataxia with oculomotor apraxia: a clinical and genetic study in 18 patients. Brain 2004, 127:759–767. The first description of a large series of patients with AOA2.

    Article  PubMed  Google Scholar 

  54. Duquette A, Roddier K, McNabb-Baltar J, et al.: Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 2005, 57:408–414.

    Article  PubMed  CAS  Google Scholar 

  55. Chen YZ, Benett CL, Huynh HM, et al.: DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004, 74:1128–1135. The authors have identified SETX mutations in patients with ALS4, an autosomal dominant form of motor neuronopathy.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Ber, I., Brice, A. & Dürr, A. New autosomal recessive cerebellar ataxias with oculomotor apraxia. Curr Neurol Neurosci Rep 5, 411–417 (2005). https://doi.org/10.1007/s11910-005-0066-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-005-0066-4

Keywords

Navigation