, Volume 15, Issue 4, pp 281-297
Date: 22 Jun 2013

Fructose-Containing Sugars, Blood Pressure, and Cardiometabolic Risk: A Critical Review

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Excessive fructose intake from high-fructose corn syrup (HFCS) and sucrose has been implicated as a driving force behind the increasing prevalence of obesity and its downstream cardiometabolic complications including hypertension, gout, dyslidpidemia, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease (NAFLD). Most of the evidence to support these relationships draws heavily on ecological studies, animal models, and select human trials of fructose overfeeding. There are a number of biological mechanisms derived from animal models to explain these relationships, including increases in de novo lipogenesis and uric acid-mediated hypertension. Differences between animal and human physiology, along with the supraphysiologic level at which fructose is fed in these models, limit their translation to humans. Although higher level evidence from large prospective cohorts studies has shown significant positive associations comparing the highest with the lowest levels of intake of sugar-sweetened beverages (SSBs), these associations do not hold true at moderate levels of intake or when modeling total sugars and are subject to collinearity effects from related dietary and lifestyle factors. The highest level of evidence from controlled feeding trials has shown a lack of cardiometabolic harm of fructose and SSBs under energy-matched conditions at moderate levels of intake. It is only when fructose-containing sugars or SSBs are consumed at high doses or supplement diets with excess energy that a consistent signal for harm is seen. The available evidence suggests that confounding by excess energy is an important consideration in assessing the role of fructose-containing sugars and SSBs in the epidemics of hypertension and other cardiometabolic diseases.