Skip to main content
Log in

Renal dopamine and sodium homeostasis

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

During the past decade, it has become evident that dopamine plays an important role in the regulation of fluid and electrolyte balance and blood pressure. Dopamine exerts its actions through two families of dopamine receptors, designated D1-like and D2-like, which are identical in the brain and in peripheral tissues. The two D1-like receptors—D1 and D5 receptors—expressed in mammals are linked to stimulation of adenylyl cyclase. The three D2-like receptors—D2, D3, and D4,—are linked to inhibition of adenylyl cyclase. Dopamine affects fluid and electrolyte balance by regulation of renal excretion of electrolytes and water through actions on renal hemodynamics and tubular epithelial transport and by modulation of the secretion and/or action of vasopressin, renin, aldosterone, catecholamines, and endothelin B receptors (ETB) receptors. It also affects fluid and sodium intake by way of "appetite" centers in the brain and alterations of gastrointestinal tract transport. The production of dopamine in neural and non-neural tissues and the presence of receptors in these tissues suggest that dopamine can act in an autocrine or paracrine fashion. This renal autocrine-paracrine function, which becomes most evident during extracellular fluid volume expansion, is lost in essential hypertension and in some animal models of genetic hypertension. This deficit may be caused by abnormalities in renal dopamine production and polymorphisms or abnormal post-translational modification and regulation of dopamine receptor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jose PA, Eisner GM, Felder RA: The renal dopamine receptors in health and disease. Pharmacol Ther 1998, 80:49–182.

    Article  Google Scholar 

  2. Pelayo JC, Fildes RD, Eisner GM, Jose PA: Effects of dopamine blockade on renal sodium excretion. Am J Physiol 1983, 245:F247-F253.

    PubMed  CAS  Google Scholar 

  3. Siragy HM, Felder RA, Howell NL, et al.: Evidence that intrarenal dopamine acts as a paracrine substance at the renal tubule. Am J Physiol 1989, 257:F469-F477.

    PubMed  CAS  Google Scholar 

  4. Hegde SS, Jadhav AL, Lokhandwala MF: Role of kidney dopamine in the natriuretic response to volume expansion in rats. Hypertension 1989, 13:828–834.

    PubMed  CAS  Google Scholar 

  5. Felder RA, Seikaly MG, Cody P, et al.: Attenuated renal response to dopaminergic drugs in spontaneously hypertensive rats. Hypertension 1990, 15:560–569.

    PubMed  CAS  Google Scholar 

  6. Hansell P, Fasching A: The effect of dopamine receptor blockade on natriuresis is dependent on the degree of hypervolemia. Kidney Int 1991, 39:253–258.

    PubMed  CAS  Google Scholar 

  7. Sibley DR: New insights into dopaminergic receptor function using antisense and genetically altered animals. Ann Rev Pharmacol Toxicol 1999, 39:313–341.

    Article  CAS  Google Scholar 

  8. Felder CC, Jose PA, Axelrod J: The dopamine-1 agonist, SKF 82526, stimulates phospholipase-C activity independent of adenylate cyclase. J Pharmacol Exp Ther 1989, 248:171–175.

    PubMed  CAS  Google Scholar 

  9. Vyas SJ, Jadhav AL, Eichberg J, Lokhandwala MF: Dopamine receptor-mediated activation of phospholipase C is associated with natriuresis during high salt intake. Am J Physiol 1992, 262:F494-F498.

    PubMed  CAS  Google Scholar 

  10. Clifford JJ, Tighe O, Croke DT, et al.: Conservation of behavioural topography to dopamine D 1-like receptor agonists in mutant mice lacking the D 1 A receptor implicates a D 1-like receptor not coupled to adenylyl cyclase. Neuroscience 1999, 93:483–1489.

    Article  Google Scholar 

  11. Lee S-H, Wang W, Yajima S, et al.: Tissue-specific promoter usage in the D 1 A dopamine receptor gene in brain and kidney. DNA Cell Biol 1997, 16:1267–1275.

    PubMed  CAS  Google Scholar 

  12. Barili P, Sabbatini M, Soares-da-Silva P, Amenta F: Dopamine D 2-like receptors in the rat kidney: effect of denervation. Eur J Pharmacol 1997, 334:233–240.

    Article  PubMed  CAS  Google Scholar 

  13. Yamaguchi I, Jose PA, Mouradian MM, et al.: Expression of dopamine D1A receptor gene in proximal tubule of rat kidneys. Am J Physiol 1993, 264:F280-F285.

    PubMed  CAS  Google Scholar 

  14. Nash SR, Godinot N, Caron MG: Cloning and characterization of the opossum kidney cell D 1 dopamine receptor: expression of identical D 1 A and D 1 B dopamine receptor mRNAs in opossum kidney and brain. Mol Pharmacol 1993, 44:918–925.

    PubMed  CAS  Google Scholar 

  15. Yao LP, Huque E, Baraniuk JN, et al.: Dopamine-1 receptor subtype (D1A and D1B) expression in microdissected rat nephron segments (abstract). Pediatr Res 1997, 41:286.

    Article  Google Scholar 

  16. O’Connell DP, Botkin SJ, Ramos SI, et al.: Localization of dopamine D 1 A receptor protein in rat kidneys. Am J Physiol 1995, 268:F1185-F1197.

    PubMed  CAS  Google Scholar 

  17. O’Connell DP, Vaughan CJ, Aherne AM, et al.: Expression of the dopamine D 3 receptor protein in the rat kidney. Hypertension 1998, 32:886–895.

    PubMed  CAS  Google Scholar 

  18. Amenta F, Barili P, Bronzetti E, Ricci A: Dopamine D 1-like receptor subtypes in the rat kidney: a microanatomical study. Clin Exp Hypertens 1999, 21:17–23.

    PubMed  CAS  Google Scholar 

  19. Sun D, Wilborn TW, Schafer JA: Dopamine D4 receptor isoform mRNA and protein are expressed in the rat cortical collecting duct. Am J Physiol 1998, 275:F742-F751.

    PubMed  CAS  Google Scholar 

  20. Brismar H, Asghar M, Carey RM, et al.: Dopamine-induced recruitment of dopamine D 1 receptors to the plasma membrane. Proc Natl Acad Sci U S A 1998, 95:5573–5578. A dopamine D1-like agonist, a dopamine precursor, and an inhibitor of dopamine metabolism led to a rapid translocation of dopamine D1 receptors from the cytosol to the plasma membrane in a porcine renal proximal tubule cell line. This is an example of ligand-specific receptor sensitization.

    Article  PubMed  CAS  Google Scholar 

  21. Felder CC, Campbell T, Albrecht F, Jose PA: Dopamine inhibits Na +-H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am J Physiol 1990, 259:F297-F303.

    PubMed  CAS  Google Scholar 

  22. Ominato M, Satoh T, Katz AI: Regulation of Na-K-ATPase activity in the proximal tubule: role of the protein kinase C pathway and of eicosanoids. J Membr Biol 1996, 152:235–243.

    Article  PubMed  CAS  Google Scholar 

  23. Baines AD, Drangova R: Does dopamine use several signal pathways to inhibit Na-Pi transport in OK cells? J Am Soc Nephrol 1998, 9:1604–1612.

    PubMed  CAS  Google Scholar 

  24. Lederer ED, Sohi SS, McLeish KR: Dopamine regulates phosphate uptake by opossum kidney cells through multiple counter-regulatory receptors. J Am Soc Nephrol 1998, 9:975–985.

    PubMed  CAS  Google Scholar 

  25. Perrichot R, Garcia-Ocana A, Couette S, et al.: Locally formed dopamine modulates renal Na-Pi co-transport through DA 1 and DA 2 receptors. Biochem J 1995, 312:433–437.

    PubMed  CAS  Google Scholar 

  26. Hall RA, Premont RT, Chow CW, et al.: The α 2-adrenergic receptor interacts with the Na +/H+-exchanger regulatory factor to control Na +/H+ exchange. Nature 1998, 392:626–630.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Y, Norian JM, Magyar CE, et al.: In vivo PTH provokes apical NHE 3 and NaPi 2 redistribution and Na-K-ATPase inhibition. Am J Physiol 1999, 276:F711-F719. A parathyroid hormone analogue that stimulates PLC and PLA2, but not PKA, inhibits renal proximal tubular Na+/K+-ATPase activity but does not produce a natriuresis or diuresis. The authors conclude that PKA stimulation is necessary for the natriuresis/diuresis induced by parathyroid hormone.

    PubMed  CAS  Google Scholar 

  28. Wiederkehr MR, Zhao H, Moe OW: Acute regulation of Na/H exchanger NHE 3 activity by protein kinase C: role of NHE 3 phosphorylation. Am J Physiol 1999, 276:C1205-C1217.

    PubMed  CAS  Google Scholar 

  29. Kurashima K, Szabo EZ, Lukacs G, et al.: Endosomal recycling of the Na +/H+ exchanger NHE 3 isoform is regulated by the phosphatidylinositol 3-kinase pathway. J Biol Chem 1998, 273:20828–20836.

    Article  PubMed  CAS  Google Scholar 

  30. Chow CW, Khurana S, Woodside M, et al.: The epithelial Na +/ H+ exchanger, NHE 3, is internalized through a clathrinmediated pathway. J Biol Chem 1999, 274:37551–37558.

    Article  PubMed  CAS  Google Scholar 

  31. Biemesderfer D, Nagy T, DeGray B, Aronson PS: Specific association of megalin and the Na +/H+ exchanger isoform NHE 3 in the proximal tubule. J Biol Chem 1999, 274:17518–17524.

    Article  PubMed  CAS  Google Scholar 

  32. Peng Y, Moe OW, Chu T, et al.: ETB receptor activation leads to activation and phosphorylation of NHE 3. Am J Physiol 1999, 276:C938-C945.

    PubMed  CAS  Google Scholar 

  33. Gagnon F, Hamet P, Orlov SN: Na +,K+ pump and Na +-coupled ion carriers in isolated mammalian kidney epithelial cells: regulation by protein kinase C. Can J Physiol Pharmacol 1999, 77:305–319.

    Article  PubMed  CAS  Google Scholar 

  34. Felder CC, Albrecht F, Eisner GM, Jose PA: The signal transducer for dopamine-1 regulated sodium transport in renal cortical brush border membrane vesicles. Am J Hypertens 1990, 3:47S-50S.

    PubMed  CAS  Google Scholar 

  35. Albrecht FE, Xu J, Moe OW, et al.: Regulation of NHE-3 activity by G-protein subunits in renal brush border membranes. AmJ Physiol 2000, in press. G protein subunits can directly inhibit NHE3 activity; Gsa inhibits while Gbg stimulates NHE3 activity in rodent renal brush border membrane vesicles devoid of cytoplasmic second messengers.

  36. Bertorello A, Aperia A: Inhibition of proximal tubule Na +-K+-ATPase activity requires simultaneous activation of DA1 and DA2 receptors. Am J Physiol 1990, 259:F924-F928.

    PubMed  CAS  Google Scholar 

  37. Hussain T, Lokhandwala MF: Altered arachidonic acid metabolism contributes to the failure of dopamine to inhibit Na +,K+-ATPase in kidney of spontaneously hypertensive rats. Clin Exp Hypertens 1996, 18:963–974.

    PubMed  CAS  Google Scholar 

  38. Aoki Y, Aviles DH, Jose PA: Biphasic effects of dopamine on 86Rubidium uptake in rat renal proximal tubules. Clin Exp Hypertens 2000, in press.

  39. Yao P, Li XX, Yu P-Y, et al.: Dopamine D1 receptor and PKC isoforms in spontaneously hypertensive rats. Hypertension 1998, 32:1049–1053.

    PubMed  CAS  Google Scholar 

  40. Satoh T, Cohen HT, Katz AI: Different mechanisms of renal Na-K-ATPase regulation by protein kinases in proximal and distal nephron. Am J Physiol 1993, 265:F399-F405.

    PubMed  CAS  Google Scholar 

  41. Chen C, Lokhandwala MF: Inhibition of Na +/K+ ATPase activity in rat renal proximal tubules by dopamine involved DA-1 receptor activation. Naunyn Schmiedebergs Arch Pharmacol 1993, 347:289–295.

    Article  PubMed  CAS  Google Scholar 

  42. LeClaire MM, Berndt TJ, Knox FG: Effect of renal interstitial infusion of L-DOPA on sodium and phosphate excretions. J Lab Clin Med 1998, 132:308–312.

    Article  PubMed  CAS  Google Scholar 

  43. Jose PA, Asico L, Eisner GM, et al.: Effects of costimulation of dopamine D 1-and D 2-like receptors on renal function. Am J Physiol 1998, 275:R986-R994.

    PubMed  CAS  Google Scholar 

  44. Cheng SX, Aizman O, Nairn AC, et al.: [Ca 2+]1 determines the effects of protein kinases A and C on activity of rat renal Na +,K+-ATPase. J Physiol (Lond) 1999, 518:37–46.

    Article  CAS  Google Scholar 

  45. Kiroytcheva M, Cheval L, Carranza ML, et al.: Effect of cAMP on the activity and the phosphorylation of Na +,K+-ATPase in rat thick ascending limb of Henle. Kidney Int 1999, 55:1819–1831.

    Article  PubMed  CAS  Google Scholar 

  46. Chibalin AV, Zierath JR, Katz AI, et al.: Phosphatidylinositol 3-kinase-mediated endocytosis of renal Na +, K +-ATPase alpha subunit in response to dopamine. Mol Biol Cell 1998, 9:1209–1220.

    PubMed  CAS  Google Scholar 

  47. Chibalin AV, Ogimoto G, Pedemonte CH, et al.: Dopamine-induced endocytosis of Na +,K+-ATPase is initiated by phosphorylation of Ser-18 in the rat alpha subunit and is responsible for the decreased activity in epithelial cells. J Biol Chem 1999, 274:1920–1927.

    Article  PubMed  CAS  Google Scholar 

  48. Shahedi M, Laborde K, Bussieres L, et al.: Protein kinase C activation causes inhibition of Na/K-ATPase activity in Madin-Darby canine kidney epithelial (MDCK) cells. Pflugers Arch 1992, 420:269–274.

    Article  PubMed  CAS  Google Scholar 

  49. Kunimi M, Seki G, Hara C, et al.: Dopamine inhibits renal Na +:HCO3-cotransporter in rabbits and normotensive rats but not in spontaneously hypertensive rats. Kidney Int 2000, 57:534–543.

    Article  PubMed  CAS  Google Scholar 

  50. Aoki Y, Albrecht FE, Jose PA: Stimulation of Na +-K+-2Cl cotransport in rat medullary thick ascending limb by dopamine. Am J Physiol 1996, 271:R1561-R1567.

    PubMed  CAS  Google Scholar 

  51. Stokes GS, Monaghan JC, Pillai DN: Effects of carbidopa and of intravenous saline infusion into normal and hypertensive subjects on urinary free and conjugated dopamine. J Hypertens 1997, 15:761–768.

    Article  PubMed  CAS  Google Scholar 

  52. Soares-da-Silva P, Vieira-Coelho MA, Pestana M: Antagonistic actions of renal dopamine and 5-hydroxytryptamine: endogenous 5-hydroxytryptamine, 5-HT1A receptors and antinatriuresis during high sodium intake. Br J Pharmacol 1996, 117:1193–1198.

    PubMed  CAS  Google Scholar 

  53. Wang Z-Q, Felder RA, Carey RM: Selective inhibition of the renal dopamine subtype D1A receptor induces antinatriuresis in conscious rats. Hypertension 1999, 33:504–510. Renal interstitial administration of antisense D1 receptor oligonucleotides transiently decreases sodium excretion in uninephrectomized rats. These studies show that renal D1 receptors are important in the regulation of sodium excretion.

    PubMed  CAS  Google Scholar 

  54. Yamaguchi I, Yao L, Sanada H, et al.: Dopamine D1A receptors and renin release in rat juxtaglomerular cells. Hypertension 1997, 29:962–968.

    PubMed  CAS  Google Scholar 

  55. Cheng H-F, Becker BN, Harris RC: Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest 1996, 97:2745–2752.

    PubMed  CAS  Google Scholar 

  56. Mühlbauer B, Spöhr F, Schmidt R, Osswald H: Role of renal nerves and endogenous dopamine in amino acid-induced glomerular hyperfiltration. Am J Physiol 1997, 273:F144-F149.

    PubMed  Google Scholar 

  57. Debska-Slizien A, Ho P, Drangova R, Baines AD: Endogenous renal dopamine production regulates phosphate excretion. Am J Physiol 1994, 266:F858-F867.

    PubMed  CAS  Google Scholar 

  58. Bertorello A, Hökfelt T, Goldstein M, Aperia A: Proximal tubule Na +-K+ ATPase activity is inhibited during high-salt diet: evidence for DA-mediated effect. Am J Physiol 1988, 254:F795-F801.

    PubMed  CAS  Google Scholar 

  59. Roman RJ, Alonso-Galicia M: P-450 eicosanoids: A novel signaling pathway regulating renal function. News Physiol Sci 1999, 14:238–242.

    PubMed  CAS  Google Scholar 

  60. Kuchel O: Peripheral dopamine in hypertension and associated conditions. J Hum Hypertens 1999, 13:605–615.

    Article  PubMed  CAS  Google Scholar 

  61. Vieira-Coelho MA, Teixeira VA, Finkel Y, et al.: Dopamine-dependent inhibition of jejunal Na +-K+-ATPase during high-salt diet in young but not in adult rats. Am J Physiol 1998, 275:G1317-G1323.

    PubMed  CAS  Google Scholar 

  62. Marmon LM, Albrecht F, Canessa LM, et al.: Identification of dopamine1A receptors in the rat small intestine. J Surg Res 1993, 54:616–620.

    Article  PubMed  CAS  Google Scholar 

  63. Roitman MF, Schafe GE, Thiele TE, Bernstein IL: Dopamine and sodium appetite: antagonists suppress sham drinking of NaCl solutions in the rat. Behav Neurosci 1997, 111:606–611.

    Article  PubMed  CAS  Google Scholar 

  64. Yoshimura M, Kambara S, Okabayashi H, et al.: Effect of decreased dopamine synthesis on the development of hypertension induced by salt loading in spontaneously hypertensive rats (abstract). Clin Exp Hypertens 1987, 9:1141–1157.

    CAS  Google Scholar 

  65. Chatziantoniou C, Ruan X, Arendshorst WJ: Defective G protein activation of the cAMP pathway in rat kidney during genetic hypertension. Proc Natl Acad Sci U S A 1995, 92:2924–2928.

    Article  PubMed  CAS  Google Scholar 

  66. Albrecht FE, Drago J, Felder RA, et al.: Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. J Clin Invest 1996, 97:2283–2288. There is co-segregation with hypertension of an impaired D1 receptor regulation of renal proximal tubular NHE3 activity and sodium excretion. The development of elevated systolic and diastolic pressure in mice lacking one or both D1 alleles suggests a causal relationship of the D1 receptor gene with hypertension.

    PubMed  CAS  Google Scholar 

  67. Felder RA, Kinoshita S, Ohbu K, et al.: Organ specificity of the dopamine1 receptor/adenylyl cyclase coupling defect in spontaneously hypertensive rats. Am J Physiol 1993, 264:R726-R732.

    PubMed  CAS  Google Scholar 

  68. Nishi A, Eklöf A-C, Bertorello AM, Aperia A: Dopamine regulation of renal Na+, K +-ATPase activity is lacking in Dahl salt-sensitive rats. Hypertension 1993, 21:767–771.

    PubMed  CAS  Google Scholar 

  69. Hussain T, Lokhandwala MF: Renal dopamine DA1 receptor coupling with GS and Gq/11 proteins in spontaneously hypertensive rats. Am J Physiol 1997, 272:F339-F346. The authors show direct evidence that the defective coupling of the D1 receptor with Gq/11a and Gsa is responsible, in part for the diminished dopamine-induced inhibition of Na+/K+ATPase in renal proximal tubular basolateral membranes of SHRs.

    PubMed  CAS  Google Scholar 

  70. Casari G, Barlassina C, Cusi D, et al.: Association of the alpha-adducin locus with essential hypertension. Hypertension 1995, 25:320–326.

    PubMed  CAS  Google Scholar 

  71. Bek M, Asico LD, Li XX, et al.: AVP-dependent hypertension in mice with disrupted dopamine D5 receptor (abstract). J Am Soc Nephrol 1999, 10:341.

    Google Scholar 

  72. Cowley AW Jr, Skelton MM, Kurth TM: Effects of long-term vasopressin receptor stimulation on medullary blood flow and arterial pressure. Am J Physiol 1998, 275:R1420-R1424.

    PubMed  CAS  Google Scholar 

  73. Bakris G, Bursztyn M, Gavras I, et al.: Role of vasopressin in essential hypertension: racial differences. J Hypertens 1997, 15:545–550.

    Article  PubMed  CAS  Google Scholar 

  74. Sanada H, Jose PA, Hazen-Martin D, et al.: Dopamine-1 receptor defect in renal proximal tubular cells in essential hypertension. Hypertension 1999, 33:1036–1042. The authors demonstrate that the uncoupling of the D1 receptor from its G protein/effector enzyme complex found in the renal proximal tubule of SHRs is also found in renal proximal tubules from humans with essential hypertension. Moreover, a ligand-independent phosphorylation of the D1 receptor may be responsible for the desensitization of the D1 receptor in renal proximal tubules in essential hypertension.

    PubMed  CAS  Google Scholar 

  75. Krushkal J, Ferrell R, Mockrin SC, et al.: Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999, 99:1407–1410.

    PubMed  CAS  Google Scholar 

  76. Kren V, Pravenec M, Lu S, et al.: Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest 1997, 99:577–581.

    PubMed  CAS  Google Scholar 

  77. GrosR, Chorazyczewski J, Meek MD, et al.: G-proteincoupled receptor kinase activity in hypertension. Hypertension 35:38–42.

  78. Gros R, Benovic JL, Tan CM, Feldman RD: G-protein-coupled receptor kinase activity is increased in hypertension. J Clin Invest 1997, 99:2087–2093.

    PubMed  CAS  Google Scholar 

  79. Fukayama S, Kong G, Benovic JL, et al.: Beta-adrenergic receptor kinase-1 acutely regulates PTH/PTHrP receptor signalling in human osteoblastlike cells. Cell Signal 1997, 9:469–474.

    Article  PubMed  CAS  Google Scholar 

  80. Sanada H, Jose P, Xu J, et al.: Essential hypertension caused by activating homozygous gene variants of FJ1 (abstract). Pediatr Res 1999, 45:337.

    Article  Google Scholar 

  81. Yu PY, Asico LD, Hopfer U, et al.: Decreased renal protein phosphatase 2A activity in spontaneous hypertension (abstract). J Am Soc Nephrol 1999, 10:360.

    Google Scholar 

  82. Luttrell LM, Ferguson SS, Daaka Y, et al.: β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 1999, 283:655–661. The authors show that β-arrestin binding which terminates receptor-G protein coupling also initiates a second wave of signal transduction in which the "desensitized" receptor stimulates mitogenesis.

    Article  PubMed  CAS  Google Scholar 

  83. Hart MJ, Jiang X, Kozasa T, et al.: Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by G alpha13. Science 1998, 280:2112–2114. These authors report the mechanisms by which heterotrimeric G proteins activate monomeric guanosine triphosphatase Rho and control cell growth.

    Article  PubMed  CAS  Google Scholar 

  84. Sowers JR, Nyby M, Jasberg K: Dopaminergic control of prolactin and blood pressure: altered control in essential hypertension. Hypertension 1982, 4:431–438.

    PubMed  CAS  Google Scholar 

  85. Thomas GN: Modulation of obesity and blood pressure by the dopamine D2 receptor Taq1 gene polymorphism (abstract). Circulation 1999, 100:I-33.

    Google Scholar 

  86. Kren V, Pravenec M, Lu S, et al.: Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest 1997, 99:577–581.

    PubMed  CAS  Google Scholar 

  87. Li XX, Asico LD, Low M, et al.: Disruption of the dopamine D 2 receptor produces non-renal dependent hypertension (abstract). J Am Soc Nephrol 1998, 9:311.

    Google Scholar 

  88. Asico LD, Ladines C, Fuchs S, et al.: Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest 1998, 102:493–498. Disruption of the D3 receptor in mice increases systolic and diastolic blood pressure that is associated with a decreased ability to excrete an acute saline load. The hypertension, which is associated with an increase in renal renin activity, can be ameliorated by AT1 receptor blockade.

    Article  PubMed  CAS  Google Scholar 

  89. Sanada H, Yao L, Jose PA, et al.: Dopamine D3 receptors in rat juxtaglomerular cells. Clin Exp Hypertens 1997, 19:93–105.

    PubMed  CAS  Google Scholar 

  90. Hussain T, Abdul-Wahab R, Kotak DK, Lokhandwala MF: Bromocriptine regulates angiotensin II response on sodium pump in renal proximal tubules. Hypertension 1998, 32:1054–1059.

    PubMed  CAS  Google Scholar 

  91. Asico LD, Eisner GM, Jose PA: Renal nerves and D 1-dopamine receptor-mediated natriuresis. Clin Exp Hypertens 1998, 20:259–271.

    Article  PubMed  CAS  Google Scholar 

  92. Soares-da-Silva P, Pestana M, Vieira-Coehlo MA, et al.: Assessment of renal dopaminergic system activity in the nitric-oxide deprived hypertensive rat model. Br J Pharmacol 1995, 114:1403–1413.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jose, P.A., Eisner, G.M. & Felder, R.A. Renal dopamine and sodium homeostasis. Current Science Inc 2, 174–183 (2000). https://doi.org/10.1007/s11906-000-0079-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-000-0079-y

Keywords

Navigation