Skip to main content

Advertisement

Log in

Metabolic Complications and Glucose Metabolism in HIV Infection: A Review of the Evidence

  • Complications of Antiretroviral Therapy (G McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

HIV infection and antiretroviral therapy (ART) use are associated with perturbations in glucose and lipid metabolism. Increasing incidence of diabetes, cardiovascular disease, and obesity highlights the need for early identification and treatment of metabolic dysfunction. Newer ART regimens are less toxic for cellular function and metabolism but have failed to completely eliminate metabolic dysfunction with HIV infection. Additional factors, including viral-host interactions, diet, physical activity, non-ART medications, and aging may further contribute to metabolic disease risk in the HIV setting. We summarize the recent literature regarding the impact on metabolic function of HIV infection, ART, and pharmaceutical or lifestyle prescriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Muyanja D, Muzoora C, Muyingo A, Muyindike W, Siedner MJ. High prevalence of metabolic syndrome and cardiovascular disease risk among people With HIV on stable ART in Southwestern Uganda. AIDS Patient Care STDs. 2016;30(1):4–10.

    Article  PubMed  Google Scholar 

  2. Nguyen KA, Peer N, Mills EJ, Kengne AP. A meta-analysis of the metabolic syndrome prevalence in the global HIV-infected population. PloS one. 2016;11(3):e0150970.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schulte-Hermann K, Schalk H, Haider B, Hutterer J, Gmeinhart B, Pichler K, et al. Impaired lipid profile and insulin resistance in a cohort of Austrian HIV patients. J Infect Chemother. 2016;22(4):248–53.

    Article  CAS  PubMed  Google Scholar 

  4. Mondy K, Overton ET, Grubb J, Tong S, Seyfried W, Powderly W, et al. Metabolic syndrome in HIV-infected patients from an urban, midwestern US outpatient population. Clin Infect Dis. 2007;44(5):726–34.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Araujo S, Banon S, Machuca I, Moreno A, Perez-Elias MJ, Casado JL. Prevalence of insulin resistance and risk of diabetes mellitus in HIV-infected patients receiving current antiretroviral drugs. Eur J Endocrinol. 2014;171(5):545–54.

    Article  CAS  PubMed  Google Scholar 

  6. Calza L, Manfredi R, Chiodo F. Insulin resistance and diabetes mellitus in HIV-infected patients receiving antiretroviral therapy. Metab Syndr Relat Disord. 2004;2(4):241–50.

    Article  CAS  PubMed  Google Scholar 

  7. Samaras K. Prevalence and pathogenesis of diabetes mellitus in HIV-1 infection treated with combined antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;50(5):499–505.

    Article  PubMed  Google Scholar 

  8. Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62.

    Article  PubMed  Google Scholar 

  9. Willig AL, Westfall AO, Overton ET, Mugavero MJ, Burkholder GA, Kim D, et al. Obesity is associated with race/sex disparities in diabetes and hypertension prevalence, but not cardiovascular disease, among HIV-infected adults. AIDS Res Hum Retrovir. 2015;31(9):898–904.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tripathi A, Liese AD, Jerrell JM, Zhang J, Rizvi AA, Albrecht H, et al. Incidence of diabetes mellitus in a population-based cohort of HIV-infected and non-HIV-infected persons: the impact of clinical and therapeutic factors over time. Diab Med. 2014;31(10):1185–93.

    Article  CAS  Google Scholar 

  11. Prevention CfDCa. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States; 2014. Atlanta. GA2014

  12. Brener MI, Post WS, Haberlen SA, Zhang L, Palella Jr FJ, Jacobson LP, et al. Comparison of insulin resistance to coronary atherosclerosis in human immunodeficiency virus infected and uninfected Men (from the multicenter AIDS cohort study). Am J Cardiol. 2016;117(6):993–1000. Large, observational cohort study that evaluated markers of insulin resistance and inflammation in men for 10+ years and observed greater insulin resistance with HIV infection.

    Article  PubMed  Google Scholar 

  13. Veloso S, Escote X, Ceperuelo-Mallafre V, Lopez-Dupla M, Peraire J, Vilades C, et al. Leptin and adiponectin, but not IL18, are related with insulin resistance in treated HIV-1-infected patients with lipodystrophy. Cytokine. 2012;58(2):253–60.

    Article  CAS  PubMed  Google Scholar 

  14. Vigouroux C, Maachi M, Nguyen TH, Coussieu C, Gharakhanian S, Funahashi T, et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. Aids. 2003;17(10):1503–11.

    Article  CAS  PubMed  Google Scholar 

  15. Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I, et al. Regulators of glucose metabolism in CD4 and CD8 T cells. Int Rev Immunol. 2015;1–12.

  16. Kosmiski LA, Scherzer R, Heymsfield SB, Rimland D, Simberkoff MS, Sidney S, et al. Association of increased upper trunk and decreased leg fat with 2-h glucose in control and HIV-infected persons. Diabetes Care. 2011;34(11):2448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63(12):4089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torriani M, Srinivasa S, Fitch KV, Thomou T, Wong K, Petrow E, et al. Dysfunctional subcutaneous Fat with reduced dicer and brown adipose tissue gene expression in HIV-infected patients. J Clin Endocrinol Metab. 2016;101(3):1225–34. Investigators utilized subcutaneous adipose tissue biopsy of 9 HIV-negative and 18 HIV-positive (9 with lipodystrophy) participants to demonstrate reduced expression of brown/beige fat genes and dysfunctional adipose tissue in HIV infection.

    Article  CAS  PubMed  Google Scholar 

  19. Dube MP, Johnson DL, Currier JS, Leedom JM. Protease inhibitor-associated hyperglycaemia. Lancet. 1997;350(9079):713–4.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez E, Gatell J. Metabolic abnormalities and use of HIV-1 protease inhibitors. Lancet. 1998;352(9130):821–2.

    Article  CAS  PubMed  Google Scholar 

  21. Mhiri C, Belec L, Di Costanzo B, Georges A, Gherardi R. The slim disease in African patients with AIDS. Trans R Soc Trop Med Hyg. 1992;86(3):303–6.

    Article  CAS  PubMed  Google Scholar 

  22. Serwadda D, Mugerwa RD, Sewankambo NK, Lwegaba A, Carswell JW, Kirya GB, et al. Slim disease: a new disease in Uganda and its association with HTLV-III infection. Lancet. 1985;2(8460):849–52.

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan AK, Nelson MR. Marked hyperlipidaemia on ritonavir therapy. Aids. 1997;11(7):938–9.

    CAS  PubMed  Google Scholar 

  24. Safrin S, Grunfeld C. Fat distribution and metabolic changes in patients with HIV infection. Aids. 1999;13(18):2493–505.

    Article  CAS  PubMed  Google Scholar 

  25. Miller KD, Jones E, Yanovski JA, Shankar R, Feuerstein I, Falloon J. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351(9106):871–5.

    Article  CAS  PubMed  Google Scholar 

  26. Caron M, Auclairt M, Vissian A, Vigouroux C, Capeau J. Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir Ther. 2008;13(1):27–38.

    CAS  PubMed  Google Scholar 

  27. Mccomsey GA, Lo Re 3rd V, O’Riordan M, Walker UA, Lebrecht D, Baron E, et al. Effect of reducing the dose of stavudine on body composition, bone density, and markers of mitochondrial toxicity in HIV-infected subjects: a randomized, controlled study. Clin Infect Dis. 2008;46(8):1290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mccomsey GA, Paulsen DM, Lonergan JT, Hessenthaler SM, Hoppel CL, Williams VC, et al. Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. Aids. 2005;19(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  29. Venhoff N, Setzer B, Melkaoui K, Walker UA. Mitochondrial toxicity of tenofovir, emtricitabine and abacavir alone and in combination with additional nucleoside reverse transcriptase inhibitors. Antivir Ther. 2007;12(7):1075–85.

    CAS  PubMed  Google Scholar 

  30. Haubrich RH, Riddler SA, Dirienzo AG, Komarow L, Powderly WG, Klingman K, et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. Aids. 2009;23(9):1109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aberg JA, Tebas P, Overton ET, Gupta SK, Sax PE, Landay A, et al. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retrovir. 2012;28(10):1184–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Overton ET, Tebas P, Coate B, Ryan R, Perniciaro A, Dayaram YK, et al. Effects of once-daily darunavir/ritonavir versus atazanavir/ritonavir on insulin sensitivity in HIV-infected persons over 48 weeks: results of an exploratory substudy of METABOLIK, a phase 4, randomized trial. HIV Clin Trials. 2016;17(2):72–7.

    Article  CAS  PubMed  Google Scholar 

  33. Quercia R, Roberts J, Martin-Carpenter L, Zala C. Comparative changes of lipid levels in treatment-naive, HIV-1-infected adults treated with dolutegravir vs. efavirenz, raltegravir, and ritonavir-boosted darunavir-based regimens over 48 weeks. Clin Drug Invest. 2015;35(3):211–9.

    Article  CAS  Google Scholar 

  34. Mccomsey GA, Moser C, Currier J, Ribaudo HJ, Paczuski P, Dube MP, et al. Body composition changes after initiation of raltegravir or protease inhibitors: ACTG A5260s. Clin Infect Dis. 2016.

  35. Conley LJ, Bush TJ, Rupert AW, Sereti I, Patel P, Brooks JT, et al. Obesity is associated with greater inflammation and monocyte activation among HIV-infected adults receiving antiretroviral therapy. Aids. 2015;29(16):2201–7.

    Article  CAS  PubMed  Google Scholar 

  36. Tate T, Willig AL, Willig JH, Raper JL, Moneyham L, Kempf MC, et al. HIV infection and obesity: where did all the wasting go? Antivir Ther. 2012;17(7):1281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reeds DC, Patterson WT, Overton BW, Yarasheski T, Ke Klein S. Metabolic benefits of weight loss are blunted in obese, HIV-infected women. Obesity (Silver Spring). 2011;19(S1):S112.

    Google Scholar 

  38. Engelson ES, Agin D, Kenya S, Werber-Zion G, Luty B, Albu JB, et al. Body composition and metabolic effects of a diet and exercise weight loss regimen on obese, HIV-infected women. Metab Clin Exp. 2006;55(10):1327–36.

    Article  CAS  PubMed  Google Scholar 

  39. Kosmiski L. Energy expenditure in HIV infection. Am J Clin Nutr. 2011;94(6):1677S–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macallan DC. Sir David Cuthbertson prize medal lecture. Metabolic abnormalities and wasting in human immunodeficiency virus infection. Proc Nutr Soc. 1998;57(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  41. Mittelsteadt AL, Hileman CO, Harris SR, Payne KM, Gripshover BM, Mccomsey GA. Effects of HIV and antiretroviral therapy on resting energy expenditure in adult HIV-infected women-a matched, prospective, cross-sectional study. J Acad Nutr Diet. 2013;113(8):1037–43.

    Article  PubMed  Google Scholar 

  42. Hessol NA, Ameli N, Cohen MH, Urwin S, Weber KM, Tien PC. The association between diet and physical activity on insulin resistance in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2013;62(1):74–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsiodras S, Poulia KA, Yannakoulia M, Chimienti SN, Wadhwa S, Karchmer AW, et al. Adherence to Mediterranean diet is favorably associated with metabolic parameters in HIV-positive patients with the highly active antiretroviral therapy-induced metabolic syndrome and lipodystrophy. Metab Clin Exp. 2009;58(6):854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turcinov D, Stanley C, Canchola JA, Rutherford GW, Novotny TE, Begovac J. Dyslipidemia and adherence to the Mediterranean diet in Croatian HIV-infected patients during the first year of highly active antiretroviral therapy. Coll Antropol. 2009;33(2):423–30.

    PubMed  PubMed Central  Google Scholar 

  45. Ng GW, Chan UM, Li PC, Wong WC. Can a Mediterranean diet reduce the effects of lipodystrophy syndrome in people living with HIV? a pilot randomised controlled trial. Sex Health. 2011;8(1):43–51.

    Article  PubMed  Google Scholar 

  46. Stradling C, Thomas GN, Hemming K, Frost G, Garcia-Perez I, Redwood S, et al. Randomised controlled pilot study to assess the feasibility of a Mediterranean portfolio dietary intervention for cardiovascular risk reduction in HIV dyslipidaemia: a study protocol. BMJ open. 2016;6(2):e010821.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Srinivasa S, Fitch KV, Wong K, Torriani M, Mayhew C, Stanley T, et al. RAAS activation is associated with visceral adiposity and insulin resistance among HIV-infected patients. J Clin Endocrinol Metab. 2015;100(8):2873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  49. Webel AR, Barkley J, Longenecker CT, Mittelsteadt A, Gripshover B, Salata RA. A cross-sectional description of age and gender differences in exercise patterns in adults living with HIV. J Assoc Nurses AIDS Care: JANAC. 2015;26(2):176–86.

    Article  PubMed  Google Scholar 

  50. Monroe AK, Brown TT, Cox C, Reynolds SM, Wiley DJ, Palella FJ, et al. Physical activity and its association with insulin resistance in multicenter AIDS cohort study Men. AIDS Res Hum Retrovir. 2015;31(12):1250–6.

    Article  CAS  PubMed  Google Scholar 

  51. Cade WT, Reeds DN, Overton ET, Herrero P, Waggoner AD, Laciny E, et al. Pilot study of pioglitazone and exercise training effects on basal myocardial substrate metabolism and left ventricular function in HIV-positive individuals with metabolic complications. HIV clinical trials. 2013;14(6):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yarasheski KE, Cade WT, Overton ET, Mondy KE, Hubert S, Laciny E, et al. Exercise training augments the peripheral insulin-sensitizing effects of pioglitazone in HIV-infected adults with insulin resistance and central adiposity. Am J Physiol Endocrinol Metab. 2011;300(1):E243–51.

    Article  CAS  PubMed  Google Scholar 

  53. Garcia A, Fraga GA, Vieira Jr RC, Silva CM, Trombeta JC, Navalta JW, et al. Effects of combined exercise training on immunological, physical and biochemical parameters in individuals with HIV/AIDS. J Sports Sci. 2014;32(8):785–92.

    Article  PubMed  Google Scholar 

  54. Troseid M, Ditlevsen S, Hvid T, Gerstoft J, Grondahl T, Pedersen BK, et al. Reduced trunk fat and triglycerides after strength training are associated with reduced LPS levels in HIV-infected individuals. J Acquir Immune Defic Syndr. 2014;66(2):e52–4.

    PubMed  Google Scholar 

  55. Group ISS, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795–807.

    Article  Google Scholar 

  56. Strategies for Management of Antiretroviral Therapy (SMART) Study Group, El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl JMed. 2006;355(22):2283–96.

  57. Hajjar J, Habra MA, Naing A. Metformin: an old drug with new potential. Expert Opin Investig Drugs. 2013;22(12):1511–7.

    Article  CAS  PubMed  Google Scholar 

  58. Hadigan C, Corcoran C, Basgoz N, Davis B, Sax P, Grinspoon S. Metformin in the treatment of HIV lipodystrophy syndrome: a randomized controlled trial. Jama. 2000;284(4):472–7.

    Article  CAS  PubMed  Google Scholar 

  59. Kohli R, Shevitz A, Gorbach S, Wanke C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV medicine. 2007;8(7):420–6.

    Article  CAS  PubMed  Google Scholar 

  60. Stanley TL, Feldpausch MN, Oh J, Branch KL, Lee H, Torriani M, et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. Jama. 2014;312(4):380–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Elahi D, Muller DC, Mcaloon-Dyke M, Tobin JD, Andres R. The effect of age on insulin response and glucose utilization during four hyperglycemic plateaus. Exp Gerontol. 1993;28(4–5):393–409.

    Article  CAS  PubMed  Google Scholar 

  62. Mohamad M, Mitchell SJ, Wu LE, White MY, Cordwell SJ, Mach J, et al. Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance. Aging Cell. 2016;15(4):706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oya J, Nakagami T, Yamamoto Y, Fukushima S, Takeda M, Endo Y, et al. Effects of age on insulin resistance and secretion in subjects without diabetes. Intern Med. 2014;53(9):941–7.

    Article  PubMed  Google Scholar 

  64. Horvath S, Levine AJ. HIV-1 infection accelerates Age according to the epigenetic clock. J Infect Dis. 2015;212(10):1563–73. First study to show that extent of age acceleration in tissue and cells can be assessed via epigenetic changes.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE, et al. Acceleration of age-associated methylation patterns in HIV-1-infected adults. PloS one. 2015;10(3):e0119201.

    Article  PubMed  PubMed Central  Google Scholar 

  66. High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH office of AIDS research by the HIV and aging working group. J Acquir Immune Defic Syndr. 2012;60 Suppl 1:S1–18.

    Article  CAS  PubMed  Google Scholar 

  67. Althoff KN, Mcginnis KA, Wyatt CM, Freiberg MS, Gilbert C, Oursler KK, et al. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin Infect Dis. 2015;60(4):627–38.

    Article  PubMed  Google Scholar 

  68. Rasmussen LD, May MT, Kronborg G, Larsen CS, Pedersen C, Gerstoft J, et al. Time trends for risk of severe age-related diseases in individuals with and without HIV infection in Denmark: a nationwide population-based cohort study. Lancet HIV. 2015;2(7):e288–98.

    Article  PubMed  Google Scholar 

  69. Wallet MA, Buford TW, Joseph AM, Sankuratri M, Leeuwenburgh C, Pahor M, et al. Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects. BMC Immunol. 2015;16:43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brunt SJ, Cysique LA, Lee S, Burrows S, Brew BJ, Price P. Do cytomegalovirus antibody levels associate with Age-related syndromes in HIV patients stable on antiretroviral therapy? AIDS research and human retroviruses. 2016.

    Google Scholar 

  71. Cioe PA, Baker J, Kojic EM, Onen N, Hammer J, Patel P, et al. Elevated soluble CD14 and lower D-dimer Are associated with cigarette smoking and heavy episodic alcohol use in persons living with HIV. J Acquir Immune Defic Syndr. 2015;70(4):400–5.

    Article  CAS  PubMed  Google Scholar 

  72. Bastard JP, Fellahi S, Couffignal C, Raffi F, Gras G, Hardel L, et al. Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother. 2015;70(6):1816–24.

    CAS  PubMed  Google Scholar 

  73. Mugavero MJ, Amico KR, Horn T, Thompson MA. The state of engagement in HIV care in the United States: from cascade to continuum to control. Clin Infect Dis. 2013;57(8):1164–71.

    Article  PubMed  Google Scholar 

  74. Ali MK, Bullard KM, Gregg EW, Del Rio C. A cascade of care for diabetes in the United States: visualizing the gaps. Ann Intern Med. 2014;161(10):681–9.

    Article  PubMed  Google Scholar 

  75. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  76. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    Article  PubMed  Google Scholar 

  77. Adolescents PoAGfAa. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Department of Health and Human Services. 2016. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed April 20 2016.

  78. Fitch KV, Anderson EJ, Hubbard JL, Carpenter SJ, Waddell WR, Caliendo AM, et al. Effects of a lifestyle modification program in HIV-infected patients with the metabolic syndrome. Aids. 2006;20(14):1843–50.

    Article  CAS  PubMed  Google Scholar 

  79. Han JH, Crane HM, Bellamy SL, Frank I, Cardillo S, Bisson GP, et al. HIV infection and glycemic response to newly initiated diabetic medical therapy. Aids. 2012;26(16):2087–95. Large, observational cohort study of the Centers for AIDS Research Network of Integrated Clinical Systems (CNICS) showing that participants with both type 2 diabetes and HIV infection achieved smaller reductions in HbA1c level that patients with only type 2 diabetes, and that this effect was more pronounced with a PI-based regimen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Funderburg NT, Jiang Y, Debanne SM, Labbato D, Juchnowski S, Ferrari B, et al. Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;68(4):396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    Article  CAS  PubMed  Google Scholar 

  82. Silverberg MJ, Leyden W, Hurley L, Go AS, Quesenberry Jr CP, Klein D, et al. Response to newly prescribed lipid-lowering therapy in patients with and without HIV infection. Ann Intern Med. 2009;150(5):301–13.

    Article  PubMed  Google Scholar 

  83. Erlandson KM, Jiang Y, Debanne SM, Mccomsey GA. Rosuvastatin worsens insulin resistance in HIV-infected adults on antiretroviral therapy. Clin Infect Dis. 2015;61(10):1566–72.

    Article  PubMed  Google Scholar 

  84. Gilbert JM, Fitch KV, Grinspoon SK. HIV-related cardiovascular disease, statins, and the REPRIEVE trial. Top Antivir Med. 2015;23(4):146–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Turner Overton.

Ethics declarations

Conflict of Interest

Edgar Turner Overton reports personal fees from IAS/USA and Amanda L. Willig declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complications of Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willig, A.L., Overton, E.T. Metabolic Complications and Glucose Metabolism in HIV Infection: A Review of the Evidence. Curr HIV/AIDS Rep 13, 289–296 (2016). https://doi.org/10.1007/s11904-016-0330-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0330-z

Keywords

Navigation