Skip to main content

Advertisement

Log in

Modeling the Implementation of Universal Coverage for HIV Treatment as Prevention and its Impact on the HIV Epidemic

  • Treatment as Prevention (RM Granich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The Joint United Nations Programme on HIV/AIDS (UNAIDS) recently updated its global targets for antiretroviral therapy (ART) coverage for HIV-positive persons under which 90 % of HIV-positive people are tested, 90 % of those are on ART, and 90 % of those achieve viral suppression. Treatment policy is moving toward treating all HIV-infected persons regardless of CD4 cell count—otherwise known as treatment as prevention—in order to realize the full therapeutic and preventive benefits of ART. Mathematical models have played an important role in guiding the development of these policies by projecting long-term health impacts and cost-effectiveness. To guide future policy, new mathematical models must consider the barriers patients face in receiving and taking ART. Here, we describe the HIV care cascade and ART delivery supply chain to examine how mathematical modeling can provide insight into cost-effective strategies for scaling-up ART coverage in sub-Saharan Africa and help achieve universal ART coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2008;105:3879–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365:493–505. This paper describes the results of the first randomized study of early ART treatment for preventing HIV transmission (HPTN 052) which demonstrated a 96% reduction in the risk of HIV transmission with early ART provision.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Delva W, Eaton JW, Meng F, Fraser C, White RG, Vickerman P, et al. HIV treatment as prevention: optimising the impact of expanded HIV treatment programmes. PLoS Med. 2012;9:e1001258.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Sidibé M, Zuniga JM, Montaner J. Leveraging HIV treatment to end AIDS, stop new HIV infections, and avoid the cost of inaction. Clin Infect Dis. 2014;59 Suppl 1:S3–6.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tanser F, Bärnighausen T, Grapsa E, Zaidi J, Newell ML. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science. 2013;339:966–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Montaner JS, Lima VD, Barrios R, Yip B, Wood E, Kerr T, et al. Association of highly active antiretroviral therapy coverage, population viral load, and yearly new HIV diagnoses in British Columbia, Canada: a population-based study. Lancet. 2010;376:532–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Das M, Chu PL, Santos GM, Scheer S, Vittinghoff E, McFarland W, et al. Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco. PLoS ONE. 2010;5:e11068.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet. 2009;373:48–57. This mathematical modeling study is the first to suggest that HIV treatment as prevention can eliminate HIV transmission.

    Article  PubMed  Google Scholar 

  9. Cremin I, Alsallaq R, Dybul M, Piot P, Garnett G, Hallett TB. The new role of antiretrovirals in combination HIV prevention: a mathematical modelling analysis. AIDS. 2013;27:447–58.

    Article  PubMed  Google Scholar 

  10. Eaton JW, Johnson LF, Salomon JA, Bärnighausen T, Bendavid E, Bershteyn A, et al. HIV treatment as prevention: systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 2012;9:e1001245.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hayes R, Ayles H, Beyers N, Sabapathy K, Floyd S, Shanaube K, et al. HPTN 071 (PopART): rationale and design of a cluster-randomised trial of the population impact of an HIV combination prevention intervention including universal testing and treatment—a study protocol for a cluster randomised trial. Trials. 2014;15:57.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Easterbrook PJ, Doherty MC, Perriëns JH, Barcarolo JL, Hirnschall GO. The role of mathematical modelling in the development of recommendations in the 2013 WHO consolidated antiretroviral therapy guidelines. AIDS. 2014;28 Suppl 1:S85–92.

    Article  PubMed  Google Scholar 

  13. Wilson DP. HIV treatment as prevention: natural experiments highlight limits of antiretroviral treatment as HIV prevention. PLoS Med. 2012;9:e1001231.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kilmarx PH, Mutasa-Apollo T. Patching a leaky pipe: the cascade of HIV care. Curr Opin HIV AIDS. 2013;8:59–64.

    PubMed  Google Scholar 

  15. Rosen S, Fox MP. Retention in HIV care between testing and treatment in sub-Saharan Africa: a systematic review. PLoS Med. 2011;8:e1001056.

    Article  PubMed Central  PubMed  Google Scholar 

  16. van Rooyen H, Barnabas RV, Baeten JM, Phakathi Z, Joseph P, Krows M, et al. High HIV testing uptake and linkage to care in a novel program of home-based HIV counseling and testing with facilitated referral in KwaZulu-Natal, South Africa. J Acquir Immune Defic Syndr. 2013;64:e1–8.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sabapathy K, Van den Bergh R, Fidler S, Hayes R, Ford N. Uptake of home-based voluntary HIV testing in sub-Saharan Africa: a systematic review and meta-analysis. PLoS Med. 2012;9:e1001351.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chamie G, Kwarisiima D, Clark TD, Kabami J, Jain V, Geng E, et al. Uptake of community-based HIV testing during a multi-disease health campaign in rural Uganda. PLoS ONE. 2014;9:e84317.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Suthar AB, Ford N, Bachanas PJ, Wong VJ, Rajan JS, Saltzman AK, et al. Towards universal voluntary HIV testing and counselling: a systematic review and meta-analysis of community-based approaches. PLoS Med. 2013;10:e1001496. This review and meta-analysis summarizes various community-based modalities for increasing HIV testing and linkage to care.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Chamie G, Kwarisiima D, Clark TD, Kabami J, Jain V, Geng E, et al. Leveraging rapid community-based HIV testing campaigns for non-communicable diseases in rural Uganda. PLoS ONE. 2012;7:e43400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cohen MS, Smith MK, Muessig KE, Hallett TB, Powers KA, Kashuba AD. Antiretroviral treatment of HIV-1 prevents transmission of HIV-1: where do we go from here? Lancet. 2013;382:1515–24.

    Article  CAS  PubMed  Google Scholar 

  22. Lima VD, Thirumurthy H, Kahn JG, Saavedra J, Cárceres CF, Whiteside A. Modeling scenarios for the end of AIDS. Clin Infect Dis. 2014;59 Suppl 1:S16–20.

    Article  PubMed  Google Scholar 

  23. El-Sadr WM, Philip NM, Justman J. Letting HIV transform academia—embracing implementation science. N Engl J Med. 2014;370:1679–81.

    Article  CAS  PubMed  Google Scholar 

  24. Young B, Zuniga JM, Montaner J, Mayer KH. Controlling the HIV epidemic with antiretrovirals: moving from consensus to implementation. Clin Infect Dis. 2014;59 Suppl 1:S1–2.

    Article  PubMed  Google Scholar 

  25. Wilson D, Fraser N. Who pays and why? Costs, effectiveness, and feasibility of HIV treatment as prevention. Clin Infect Dis. 2014;59 Suppl 1:S28–31.

    Article  PubMed  Google Scholar 

  26. McNairy ML, El-Sadr WM. A paradigm shift: focus on the HIV prevention continuum. Clin Infect Dis. 2014;59 Suppl 1:S12–5.

    Article  PubMed  Google Scholar 

  27. Nachega JB, Uthman OA, Del Rio C, Mugavero MJ, Rees H, Mills EJ. Addressing the Achilles’ heel in the HIV care continuum for the success of a test-and-treat strategy to achieve an AIDS-free generation. Clin Infect Dis. 2014;59 Suppl 1:S21–7.

    Article  PubMed  Google Scholar 

  28. Granich R, Kahn JG, Bennett R, Holmes CB, Garg N, Serenata C, et al. Expanding ART for treatment and prevention of HIV in South Africa: estimated cost and cost-effectiveness 2011-2050. PLoS ONE. 2012;7:e30216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Walensky RP, Ross EL, Kumarasamy N, Wood R, Noubary F, Paltiel AD, et al. Cost-effectiveness of HIV treatment as prevention in serodiscordant couples. N Engl J Med. 2013;369:1715–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cori A, Ayles H, Beyers N, Schaap A, Floyd S, Sabapathy K, et al. HPTN 071 (PopART): a cluster-randomized trial of the population impact of an HIV combination prevention intervention including universal testing and treatment: mathematical model. PLoS ONE. 2014;9:e84511.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Granich R, Gupta S, Suthar AB, Smyth C, Hoos D, Vitoria M, et al. Antiretroviral therapy in prevention of HIV and TB: update on current research efforts. Curr HIV Res. 2011;9:446–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Eaton JW, Menzies NA, Stover J, Cambiano V, Chindelevitch L, Cori A, et al. Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models. Lancet Glob Health. 2013;2:23–34.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369:643–56.

    Article  PubMed  Google Scholar 

  34. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med. 2012;367:399–410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329:1168–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Alsallaq RA, Baeten JM, Celum CL, Hughes JP, Abu-Raddad LJ, Barnabas RV, et al. Understanding the potential impact of a combination HIV prevention intervention in a hyper-endemic community. PLoS ONE. 2013;8:e54575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kates J, Wexler A, Lief E. Financing the response to HIV in low- and middle-income countries: international assistance from donor governments in 2013. Kaiser Family Foundation; 2014.

  38. Facility-based unit costing for antiretroviral treatment in five Sub-Saharan African countries. The Clinton Health Access Initiative; 2011.

  39. National AIDS and STI Control Programme (NASCOP), Kenya. Kenya AIDS indicator survey 2012: final report. Nairobi: NASCOP; 2014.

  40. Shisana O, Rehle T, Simbayi L, Parker W, Jooste S, van Wyk VP, et al. South African national HIV prevalence, incidence, behavior and communication survey 2008: a turning tide among teenagers? Cape Town, South Africa; 2008.

  41. Shisana O, Rehle T, Simbayi L, Zuma K, Jooste S, Zungu N, et al. South African national HIV prevalence, incidence and behaviour survey, 2012. Cape Town; 2014.

  42. Lugada E, Millar D, Haskew J, Grabowsky M, Garg N, Vestergaard M, et al. Rapid implementation of an integrated large-scale HIV counseling and testing, malaria, and diarrhea prevention campaign in rural Kenya. PLoS ONE. 2010;5:e12435.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lazarus JV, Safreed-Harmon K, Nicholson J, Jaffar S. Health service delivery models for the provision of antiretroviral therapy in sub-Saharan Africa: a systematic review. Trop Med Int Health. 2014.

  44. Rosenberg NE, Pettifor AE, De Bruyn G, Westreich D, Delany-Moretlwe S, Behets F, et al. HIV testing and counseling leads to immediate consistent condom use among South African stable HIV-discordant couples. J Acquir Immune Defic Syndr. 2013;62:226–33.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Montgomery ET, van der Straten A, Chidanyika A, Chipato T, Jaffar S, Padian N. The importance of male partner involvement for women’s acceptability and adherence to female-initiated HIV prevention methods in Zimbabwe. AIDS Behav. 2011;15:959–69.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Barnabas R, Ying R, van Rooyen H, Murnane P, Hughes J, Baeten J, et al. Use of HIV viral-load suppression to estimate the effect of community-wide home-based HIV counselling and testing and linkage to antiretroviral therapy on HIV incidence in South Africa: a mathematical modelling analysis. Lancet. 2013;382(Supplement 2):S6.

    Article  Google Scholar 

  47. Dodd PJ, Garnett GP, Hallett TB. Examining the promise of HIV elimination by ‘test and treat’ in hyperendemic settings. AIDS. 2010;24:729–35.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Birger RB, Hallett TB, Sinha A, Grenfell BT, Hodder SL. Modeling the impact of interventions along the HIV continuum of care in Newark, New Jersey. Clin Infect Dis. 2013. This mathematical model simulates the HIV care cascade in Newark, New Jersey, and is one of the first models to critically assess specific steps in the care cascade.

  49. Katz IT, Essien T, Marinda ET, Gray GE, Bangsberg DR, Martinson NA, et al. Antiretroviral therapy refusal among newly diagnosed HIV-infected adults. AIDS. 2011;25:2177–81.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bassett IV, Regan S, Chetty S, Giddy J, Uhler LM, Holst H, et al. Who starts antiretroviral therapy in Durban, South Africa?… not everyone who should. AIDS. 2010;24 Suppl 1:S37–44.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Fox MP, Rosen S. Patient retention in antiretroviral therapy programs up to three years on treatment in sub-Saharan Africa, 2007–2009: systematic review. Trop Med Int Health. 2010;15 Suppl 1:1–15.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Geng EH, Bangsberg DR, Musinguzi N, Emenyonu N, Bwana MB, Yiannoutsos CT, et al. Understanding reasons for and outcomes of patients lost to follow-up in antiretroviral therapy programs in Africa through a sampling-based approach. J Acquir Immune Defic Syndr. 2010;53:405–11.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Yu JK, Chen SC, Wang KY, Chang CS, Makombe SD, Schouten EJ, et al. True outcomes for patients on antiretroviral therapy who are “lost to follow-up” in Malawi. Bull World Health Organ. 2007;85:550–4.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Rosen S, Ketlhapile M. Cost of using a patient tracer to reduce loss to follow-up and ascertain patient status in a large antiretroviral therapy program in Johannesburg, South Africa. Trop Med Int Health. 2010;15 Suppl 1:98–104.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Rich ML, Miller AC, Niyigena P, Franke MF, Niyonzima JB, Socci A, et al. Excellent clinical outcomes and high retention in care among adults in a community-based HIV treatment program in rural Rwanda. J Acquir Immune Defic Syndr. 2012;59:e35–42.

    Article  PubMed  Google Scholar 

  56. Montaner JS, Lima VD, Harrigan PR, Lourenço L, Yip B, Nosyk B, et al. Expansion of HAART coverage is associated with sustained decreases in HIV/AIDS morbidity, mortality and HIV transmission: the “HIV treatment as prevention” experience in a Canadian setting. PLoS ONE. 2014;9:e87872.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Nosyk B, Montaner JS, Colley G, Lima VD, Chan K, Heath K, et al. The cascade of HIV care in British Columbia, Canada, 1996–2011: a population-based retrospective cohort study. Lancet Infect Dis. 2014;14:40–9.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Estill J, Tweya H, Egger M, Wandeler G, Feldacker C, Johnson LF, et al. Tracing of patients lost to follow-up and HIV transmission: mathematical modeling study based on 2 large ART programs in Malawi. J Acquir Immune Defic Syndr. 2014;65:e179–86.

    Article  PubMed  Google Scholar 

  59. Klein DJ, Bershteyn A, Eckhoff PA. Dropout and re-enrollment: implications for epidemiological projections of treatment programs. AIDS. 2014;28 Suppl 1:S47–59.

    Article  PubMed  Google Scholar 

  60. Hoffmann CJ, Lewis JJ, Dowdy DW, Fielding KL, Grant AD, Martinson NA, et al. Mortality associated with delays between clinic entry and ART initiation in resource-limited settings: results of a transition-state model. J Acquir Immune Defic Syndr. 2013;63:105–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hallett TB, Eaton JW. A side door into care cascade for HIV-infected patients? J Acquir Immune Defic Syndr. 2013;63 Suppl 2:S228–32.

    Article  PubMed  Google Scholar 

  62. UNAIDS/WHO. Global report: UNAIDS report on the global AIDS epidemic, 2013. Joint United Nations Programme on HIV/AIDS; 2013.

  63. Tolle MA, Phelps BR, Desmond C, Sugandhi N, Omeogu C, Jamieson D, et al. Delivering pediatric HIV care in resource-limited settings: cost considerations in an expanded response. AIDS. 2013;27 Suppl 2:S179–86.

    Article  PubMed  Google Scholar 

  64. Okoronkwo I, Okeke U, Chinweuba A, Iheanacho P. Nonadherence factors and sociodemographic characteristics of HIV-infected adults receiving antiretroviral therapy in Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria. ISRN AIDS. 2013;2013:843794.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kraiselburd S, Yadav P. Supply chains and global health: an imperative for bringing operations management scholarship into action, production and operations management. Production and operations management; 2013. pp. 377–381. This paper discusses the importance of supply chains in delivering critical medications in global health, as well as current supply chain weaknesses.

  66. Ambitious treatment targets: writing the final chapter of the AIDS epidemic. Geneva: UNAIDS; 2014.

  67. Fernandez M. Improving access to critical medicines: the last mile. HIV treatment as prevention workshop. Vancouver; 2014.

  68. Trochim WM, Cabrera DA, Milstein B, Gallagher RS, Leischow SJ. Practical challenges of systems thinking and modeling in public health. Am J Public Health. 2006;96:538–46.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Leischow SJ, Milstein B. Systems thinking and modeling for public health practice. Am J Public Health. 2006;96:403–5.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Bill & Melinda Gates Foundation. Oral PrEP in South Africa. Bottom-up cost model.

  71. Rosen JE, Bancroft E, Hasselback L, Levin C, Mvundura M, Tien M. Last mile costs of public health supply chains in developing countries: recommendations for inclusion in the United Nations OneHealth Model. Arlington: USAID | DELIVER PROJECT, Task Order 4; 2012.

  72. Meyer-Rath G, Over M. HIV treatment as prevention: modelling the cost of antiretroviral treatment—state of the art and future directions. PLoS Med. 2012;9:e1001247. The authors explain the importance of including cost functions into mathematical models to provide more accurate estimates of the programmatic costs of ART provision.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Marseille E, Dandona L, Marshall N, Gaist P, Bautista-Arredondo S, Rollins B, et al. HIV prevention costs and program scale: data from the PANCEA project in five low and middle-income countries. BMC Health Serv Res. 2007;7:108.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Guinness L, Kumaranayake L, Rajaraman B, Sankaranarayanan G, Vannela G, Raghupathi P, et al. Does scale matter? The costs of HIV-prevention interventions for commercial sex workers in India. Bull World Health Organ. 2005;83:747–55.

    PubMed Central  PubMed  Google Scholar 

  75. Guinness L, Kumaranayake L, Hanson K. A cost function for HIV prevention services: is there a ‘u’-shape? Cost Eff Resour Alloc. 2007;5:13.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Brown ST, Schreiber B, Cakouros BE, Wateska AR, Dicko HM, Connor DL, et al. The benefits of redesigning Benin’s vaccine supply chain. Vaccine. 2014;32:4097–103.

    Article  PubMed  Google Scholar 

  77. Assi TM, Brown ST, Kone S, Norman BA, Djibo A, Connor DL, et al. Removing the regional level from the Niger vaccine supply chain. Vaccine. 2013;31:2828–34.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Futures Institute. OneHealthTool. 2011.

  79. Llamasoft. Supply Chain Guru. 2014.

  80. Jamison DT, Summers LH, Alleyne G, Arrow KJ, Berkley S, Binagwaho A, et al. Global health 2035: a world converging within a generation. Lancet. 2013;382:1898–955.

    Article  PubMed  Google Scholar 

  81. Ekici A, Keskinocak P, Swann JL. Pandemic influenza response. Winter simulation conference. Miami, FL; 2008.

  82. Mvundura M, Kien VD, Nga NT, Robertson J, Cuong NV, Tung HT, et al. How much does it cost to get a dose of vaccine to the service delivery location? Empirical evidence from Vietnam’s Expanded Program on Immunization. Vaccine. 2014;32:834–8.

    Article  PubMed  Google Scholar 

  83. McChord J, Tien M, Sarley D. Guide to public health supply chain costing: a basic methodology. Arlington: USAID | DELIVER PROJECT, Task Order 4; 2013.

  84. Nkengasong JN, Nsubuga P, Nwanyanwu O, Gershy-Damet GM, Roscigno G, Bulterys M, et al. Laboratory systems and services are critical in global health: time to end the neglect? Am J Clin Pathol. 2010;134:368–73.

    Article  PubMed  Google Scholar 

  85. Alemnji G, Fonjungo P, Van Der Pol B, Peter T, Kantor R, Nkengasong J. The centrality of laboratory services in the HIV treatment and prevention cascade: the need for effective linkages and referrals in resource-limited settings. AIDS Patient Care STDS. 2014;28:268–73.

    Article  PubMed  Google Scholar 

  86. Upfill-Brown AM, Lyons HM, Pate MA, Shuaib F, Baig S, Hu H, et al. Predictive spatial risk model of poliovirus to aid prioritization and hasten eradication in Nigeria. BMC Med. 2014;12:92.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Anderson SJ, Cherutich P, Kilonzo N, Cremin I, Fecht D, Kimanga D, et al. Maximising the effect of combination HIV prevention through prioritisation of the people and places in greatest need: a modelling study. Lancet. 2014;384:249–56.

    Article  PubMed  Google Scholar 

  88. Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 2013;13:349–61.

    Article  CAS  PubMed  Google Scholar 

  89. Reiser H. Making new drugs available to all. HIV treatment as prevention workshop. Vancouver, Canada; 2014.

  90. Huff-Rousselle M. The logical underpinnings and benefits of pooled pharmaceutical procurement: a pragmatic role for our public institutions? Soc Sci Med. 2012;75:1572–80.

    Article  PubMed  Google Scholar 

  91. Levine R, Pickett J, Sekhri N, Yadav P. Demand forecasting for essential medical technologies. Am J Law Med. 2008;34:225–55.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Roger Ying, Ruanne V. Barnabas, and Brian G. Williams declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, R., Barnabas, R.V. & Williams, B.G. Modeling the Implementation of Universal Coverage for HIV Treatment as Prevention and its Impact on the HIV Epidemic. Curr HIV/AIDS Rep 11, 459–467 (2014). https://doi.org/10.1007/s11904-014-0232-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-014-0232-x

Keywords

Navigation