Skip to main content
Log in

Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia

  • Acute Lymphocytic Leukemias (K Ballen, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to summarize the most recent and most robust pharmacogenetic predictors of treatment-related toxicity (TRT) in childhood acute lymphoblastic leukemia (ALL).

Recent Findings

Multiple studies have examined the toxicities of the primary chemotherapeutic agents used to treat childhood ALL in relation to host genetic factors. However, few results have been replicated independently, largely due to cohort differences in ancestry, chemotherapy treatment protocols, and definitions of toxicities. To date, there is only one widely accepted clinical guideline for dose modification based on gene status: thiopurine dosing based on TPMT genotype. Based on recent data, it is likely that this guideline will be modified to incorporate other gene variants, such as NUDT15.

Summary

We highlight genetic variants that have been consistently associated with TRT across treatment groups, as well as those that best illustrate the underlying pathophysiology of TRT. In the coming decade, we expect that survivorship care will routinely specify screening recommendations based on genetics. Furthermore, clinical trials testing protective interventions may modify inclusion criteria based on genetically determined risk of specific TRTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance, ••Of major importance

  1. Abrahao R, Lichtensztajn DY, Ribeiro RC, Marina NM, Keogh RH, Marcos-Gragera R, et al. Racial/ethnic and socioeconomic disparities in survival among children with acute lymphoblastic leukemia in California, 1988–2011: a population-based observational study. Pediatr Blood Cancer. 2015;62(10):1819–25. doi:10.1002/pbc.25544.

    Article  PubMed  Google Scholar 

  2. Conklin KA. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer. 2000;37(1):1–18. doi:10.1207/S15327914NC3701_1.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta S, Wilejto M, Pole JD, Guttmann A, Sung L. Low socioeconomic status is associated with worse survival in children with cancer: a systematic review. PLoS One. 2014;9(2):e89482. doi:10.1371/journal.pone.0089482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xue H. Nutrition modulation of gastrointestinal toxicity related to cancer chemotherapy from preclinical findings to clinical strategy. JPEN J Parenter Enteral Nutr. 2011;35(1):74–90. doi:10.1177/0148607110377338.

    Article  CAS  PubMed  Google Scholar 

  5. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2013. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site.

  6. Chang CQ, Yesupriya A, Rowell JL, Pimentel CB, Clyne M, Gwinn M, et al. A systematic review of cancer GWAS and candidate gene meta-analyses reveals limited overlap but similar effect sizes. Eur J Hum Genet. 2014;22(3):402–8. doi:10.1038/ejhg.2013.161.

    Article  CAS  PubMed  Google Scholar 

  7. Yates CR. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997;126(8):608. doi:10.7326/0003-4819-126-8-199704150-00003.

    Article  CAS  PubMed  Google Scholar 

  8. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther. 2013;93(4):324–5. doi:10.1038/clpt.2013.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weinshilboum RM. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32(5):651.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014;46(9):1017–20. doi:10.1038/ng.3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka Y, Kato M, Hasegawa D, Urayama KY, Nakadate H, Kondoh K, et al. Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol. 2015;171(1):109–15. doi:10.1111/bjh.13518.

    Article  CAS  PubMed  Google Scholar 

  12. • Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–42. doi:10.1200/JCO.2014.59.4671. GWAS of >1000 children with ALL describing association between a germline NUDT15 variant and 6-MP intolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiengthong K, Ittiwut C, Muensri S, Sophonphan J, Sosothikul D, Seksan P, et al. NUDT15 c.415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia. Haematologica. 2016;101(1):e24–6. doi:10.3324/haematol.2015.134775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liang DC, Yang CP, Liu HC, Jaing TH, Chen SH, Hung IJ, et al. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia. Pharmacogenomics J. 2016;16(6):536–9. doi:10.1038/tpj.2015.75.

    Article  CAS  PubMed  Google Scholar 

  15. Karas-Kuzelicki N, Jazbec J, Milek M, Mlinaric-Rascan I. Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients. Leukemia. 2009;23(5):971–4. doi:10.1038/leu.2008.317.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Yin Y, Sheng Q, Lu X, Wang F, Lin Z, et al. Association of ABCC2 -24C>T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS One. 2014;9(1):e82681. doi:10.1371/journal.pone.0082681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Salazar J, Altes A, del Rio E, Estella J, Rives S, Tasso M, et al. Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia. Pharmacogenomics J. 2012;12(5):379–85. doi:10.1038/tpj.2011.25.

    Article  CAS  PubMed  Google Scholar 

  18. Zgheib NK, Akra-Ismail M, Aridi C, Mahfouz R, Abboud MR, Solh H, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2014;24(8):387–96.

    CAS  PubMed  Google Scholar 

  19. Cole PD, Drachtman RA, Masterson M, Smith AK, Glod J, Zebala JA, et al. Phase 2B trial of aminopterin in multiagent therapy for children with newly diagnosed acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2008;62(1):65–75. doi:10.1007/s00280-007-0576-7.

    Article  CAS  PubMed  Google Scholar 

  20. D'Angelo V, Ramaglia M, Iannotta A, Crisci S, Indolfi P, Francese M, et al. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol. 2011;68(5):1339–46. doi:10.1007/s00280-011-1665-1.

    Article  PubMed  CAS  Google Scholar 

  21. El-Khodary NM, El-Haggar SM, Eid MA, Ebeid EN. Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol. 2012;29(3):2053–62. doi:10.1007/s12032-011-9997-6.

    Article  CAS  PubMed  Google Scholar 

  22. Erculj N, Kotnik BF, Debeljak M, Jazbec J, Dolzan V. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(6):1096–104. doi:10.3109/10428194.2011.639880.

    Article  CAS  PubMed  Google Scholar 

  23. Liu SG, Li ZG, Cui L, Gao C, Li WJ, Zhao XX. Effects of methylenetetrahydrofolate reductase gene polymorphisms on toxicities during consolidation therapy in pediatric acute lymphoblastic leukemia in a Chinese population. Leuk Lymphoma. 2011;52(6):1030–40. doi:10.3109/10428194.2011.563883.

    Article  CAS  PubMed  Google Scholar 

  24. •• Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2013;13(6):498–506. doi:10.1038/tpj.2012.44. Meta-analysis showing no association between MTHFR polymorphisms and MTX-related toxicity in pediatric ALL.

    Article  CAS  PubMed  Google Scholar 

  25. Spyridopoulou KP, Dimou NL, Hamodrakas SJ, Bagos PG. Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: a meta-analysis. Pharmacogenet Genomics. 2012;22(2):117–33. doi:10.1097/FPC.0b013e32834ded2a.

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol. 2012;33(5):1445–54. doi:10.1007/s13277-012-0395-2.

    Article  CAS  PubMed  Google Scholar 

  27. •• Krull KR, Bhojwani D, Conklin HM, Pei D, Cheng C, Reddick WE, et al. Genetic mediators of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2013;31(17):2182–8. doi:10.1200/JCO.2012.46.7944. Association of inferior neurocognitive outcomes in ALL survivors with polymorphisms in genes related to metabolism of chemotherapeutic agents and oxidative stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamdar KY, Krull KR, El-Zein RA, Brouwers P, Potter BS, Harris LL, et al. Folate pathway polymorphisms predict deficits in attention and processing speed after childhood leukemia therapy. Pediatr Blood Cancer. 2011;57(3):454–60. doi:10.1002/pbc.23162.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krajinovic M, Robaey P, Chiasson S, Lemieux-Blanchard E, Rouillard M, Primeau M, et al. Polymorphisms of genes controlling homocysteine levels and IQ score following the treatment for childhood ALL. Pharmacogenomics. 2005;6(3):293–302. doi:10.1517/14622416.6.3.293.

    Article  CAS  PubMed  Google Scholar 

  30. Kishi S, Cheng C, French D, Pei D, Das S, Cook EH, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109(10):4151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eipel O, Hegyi M, Csordás K, Németh K, Luczay A, Török D, et al. Some GCR polymorphisms (N363S, ER22/23EK, and Bcl-1) may influence steroid-induced toxicities and survival rates in children with ALL. J Pediatr Hematol Oncol. 2016;38(5):334–40.

    Article  CAS  PubMed  Google Scholar 

  32. • Cole PD, Finkelstein Y, Stevenson KE, Blonquist TM, Vijayanathan V, Silverman LB, et al. Polymorphisms in genes related to oxidative stress are associated with inferior cognitive function after therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2015;33(19):2205–11. doi:10.1200/JCO.2014.59.0273. Recent study confirming the association between inferior neurocognitive outcomes in ALL survivors and gene polymorphisms related to oxidative stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, Ansari M, et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2016;16(6):530–5. doi:10.1038/tpj.2015.63.

    Article  CAS  PubMed  Google Scholar 

  34. Ceppi F, Langlois-Pelletier C, Gagné V, Rousseau J, Ciolino C, De Lorenzo S, et al. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(8):1105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, Quinney SK, et al. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56(3):361–7. doi:10.1002/pbc.22845.

    Article  PubMed  Google Scholar 

  36. • Diouf B, Crews KR, Lew G, Pei D, Cheng C, Bao J, et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA. 2015;313(8):815–23. doi:10.1001/jama.2015.0894. GWAS associating a SNP in the promoter region of the CEP72 gene with vincristine induced peripheral neuropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopez-Lopez E. Vincristine pharmacokinetics pathway and neurotoxicity during early phases of treatment in pediatric acute lymphoblastic leukemia. Pharmacogenomics. 2016;17(7):731–41. doi:10.2217/pgs-2016-0001.

    Article  CAS  PubMed  Google Scholar 

  38. •• Karol SE, Yang W, Van Driest SL, Chang TY, Kaste S, Bowton E, et al. Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2015;126(15):1770–6. doi:10.1182/blood-2015-05-643601. GWAS of >2000 children with ALL identifying variant in glutamate receptor genes as risk factors for steroid-induced osteonecrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Relling MV, Yang W, Das S, Cook EH, Rosner GL, Neel M, et al. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol. 2004;22(19):3930–6. doi:10.1200/JCO.2004.11.020.

    Article  PubMed  Google Scholar 

  40. Karol SE, Mattano LA, Yang W, Maloney KW, Smith C, Liu C, et al. Genetic risk factors for the development of osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood. 2016;127(5):558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. French D, Hamilton LH, Mattano Jr LA, Sather HN, Devidas M, Nachman JB, et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2008;111(9):4496–9. doi:10.1182/blood-2007-11-123885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Finkelstein Y, Blonquist TM, Vijayanathan V, Stevenson KE, Neuberg DS, Silverman LB, et al. A thymidylate synthase polymorphism is associated with increased risk for bone toxicity among children treated for acute lymphoblastic leukemia. Pediatr Blood Cancer. 2016; doi:10.1002/pbc.26393. Recent study reporting association of the TYMS 2R/2R genotype with increased risk of osteonecrosis in young children and bone fractures in older children.

    PubMed  Google Scholar 

  43. Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ, Kiszel PS, et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol Int. 2012;36(1):79–86. doi:10.1042/CBI20110264.

    Article  CAS  PubMed  Google Scholar 

  44. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dube MP, Al-Saloos H, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012;30(13):1422–8. doi:10.1200/JCO.2010.34.3467.

    Article  PubMed  Google Scholar 

  45. Visscher H, Ross CJ, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer. 2013;60(8):1375–81. doi:10.1002/pbc.24505.

    Article  CAS  PubMed  Google Scholar 

  46. Gregers J, Green H, Christensen IJ, Dalhoff K, Schroeder H, Carlsen N, et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(4):372–9. doi:10.1038/tpj.2014.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(13):1415–21. doi:10.1200/JCO.2011.34.8987.

    Article  CAS  PubMed  Google Scholar 

  48. Cascales A, Sanchez-Vega B, Navarro N, Pastor-Quirante F, Corral J, Vicente V, et al. Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. Int J Cardiol. 2012;154(3):282–6. doi:10.1016/j.ijcard.2010.09.046.

    Article  PubMed  Google Scholar 

  49. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119(19):3555–62. doi:10.1002/cncr.28256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen SH, Pei D, Yang W, Cheng C, Jeha S, Cox NJ, et al. Genetic variations in GRIA1 on chromosome 5q33 related to asparaginase hypersensitivity. Clin Pharmacol Ther. 2010;88(2):191–6. doi:10.1038/clpt.2010.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernandez CA, Smith C, Yang W, Daté M, Bashford D, Larsen E, et al. HLA-DRB1* 07: 01 is associated with a higher risk of asparaginase allergies. Blood. 2014;124(8):1266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandez CA, Smith C, Yang W, Mullighan CG, Qu C, Larsen E, et al. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood. 2015;126(1):69–75. doi:10.1182/blood-2015-02-628800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kutszegi N, Semsei AF, Gezsi A, Sagi JC, Nagy V, Csordas K, et al. Subgroups of paediatric acute lymphoblastic leukaemia might differ significantly in genetic predisposition to asparaginase hypersensitivity. PLoS One. 2015;10(10):e0140136. doi:10.1371/journal.pone.0140136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rajic V, Debeljak M, Goricar K, Jazbec J. Polymorphisms in GRIA1 gene are a risk factor for asparaginase hypersensitivity during the treatment of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2015;56(11):3103–8. doi:10.3109/10428194.2015.1020802.

    Article  CAS  PubMed  Google Scholar 

  55. Ben Tanfous M, Sharif-Askari B, Ceppi F, Laaribi H, Gagne V, Rousseau J, et al. Polymorphisms of asparaginase pathway and asparaginase-related complications in children with acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(2):329–34. doi:10.1158/1078-0432.CCR-14-0508.

    Article  CAS  PubMed  Google Scholar 

  56. Lopez-Lopez E, Ballesteros J, Pinan MA, Sanchez de Toledo J, Garcia de Andoin N, Garcia-Miguel P, et al. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics. 2013;23(2):53–61. doi:10.1097/FPC.0b013e32835c3b24.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Pinan MA, Garcia-Miguel P, Navajas A, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–9. doi:10.1002/pbc.23074.

    Article  PubMed  Google Scholar 

  58. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121(26):5145–53. doi:10.1182/blood-2013-01-480335.

    Article  CAS  PubMed  Google Scholar 

  59. Ramsey LB, Bruun GH, Yang W, Trevino LR, Vattathil S, Scheet P, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22(1):1–8. doi:10.1101/gr.129668.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121(6):898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang HN, He XL, Wang C, Wang Y, Chen YJ, Li JX, et al. Impact of SLCO1B1 521T> C variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr Blood Cancer. 2014;61(12):2203–7. doi:10.1002/pbc.25191.

    Article  CAS  PubMed  Google Scholar 

  62. Stocco G, Cheok M, Crews K, Dervieux T, French D, Pei D, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther. 2009;85(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  63. Franca R, Rebora P, Bertorello N, Fagioli F, Conter V, Biondi A, et al. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. Pharmacogenomics J. 2015; doi:10.1038/tpj.2015.83.

    PubMed  Google Scholar 

  64. Adam de Beaumais T, Fakhoury M, Medard Y, Azougagh S, Zhang D, Yakouben K, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol. 2011;71(4):575–84. doi:10.1111/j.1365-2125.2010.03867.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tanaka Y, Manabe A, Nakadate H, Kondoh K, Nakamura K, Koh K, et al. The activity of the inosine triphosphate pyrophosphatase affects toxicity of 6-mercaptopurine during maintenance therapy for acute lymphoblastic leukemia in Japanese children. Leuk Res. 2012;36(5):560–4. doi:10.1016/j.leukres.2011.11.015.

    Article  CAS  PubMed  Google Scholar 

  66. Wan Rosalina WR, Teh LK, Mohamad N, Nasir A, Yusoff R, Baba AA, et al. Polymorphism of ITPA 94C>A and risk of adverse effects among patients with acute lymphoblastic leukaemia treated with 6-mercaptopurine. J Clin Pharm Ther. 2012;37(2):237–41. doi:10.1111/j.1365-2710.2011.01272.x.

    Article  CAS  PubMed  Google Scholar 

  67. Campbell JM, Bateman E, Stephenson MD, Bowen JM, Keefe DM, Peters MD. Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Cancer Chemother Pharmacol. 2016;78(1):27–39. doi:10.1007/s00280-016-3043-5.

    Article  CAS  PubMed  Google Scholar 

  68. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolzan V, Jazbec J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011;67(10):993–1006. doi:10.1007/s00228-011-1046-z.

    Article  CAS  PubMed  Google Scholar 

  69. Tanaka Y, Manabe A, Nakadate H, Kondoh K, Nakamura K, Koh K, et al. Methylenetetrahydrofolate reductase gene haplotypes affect toxicity during maintenance therapy for childhood acute lymphoblastic leukemia in Japanese patients. Leuk Lymphoma. 2014;55(5):1126–31. doi:10.3109/10428194.2013.825902.

    Article  CAS  PubMed  Google Scholar 

  70. Stocco G, Yang W, Crews KR, Thierfelder WE, Decorti G, Londero M, et al. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet. 2012;21(21):4793–804. doi:10.1093/hmg/dds302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Relling MV. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. JNCI: Journal of the National Cancer Institute. 1999;91(23):2001.

    Article  CAS  PubMed  Google Scholar 

  72. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet. 1990;336(8709):225–9. doi:10.1016/0140-6736(90)91745-V.

    Article  CAS  PubMed  Google Scholar 

  73. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48(4):367–73. doi:10.1038/ng.3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline information for mercaptopurine and TPMT-May 2016 Update on PharmGKB. https://www.pharmgkb.org/guideline/PA166104945.

  75. Tanaka Y, Manabe A, Fukushima H, Suzuki R, Nakadate H, Kondoh K, et al. Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(4):380–4. doi:10.1038/tpj.2014.74.

    Article  CAS  PubMed  Google Scholar 

  76. Cole PD, Kamen BA. Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia. Ment Retard Dev Disabil Res Rev. 2006;12(3):174–83. doi:10.1002/mrdd.20113.

    Article  PubMed  Google Scholar 

  77. Duffner PK. Neurocognitive and neuroradiologic central nervous system late effects in children treated on Pediatric Oncology Group (POG) P9605 (standard risk) and P9201 (lesser risk) acute lymphoblastic leukemia protocols (ACCL0131): a methotrexate consequence? A report from the Children’s Oncology Group. J Pediatr Hematol Oncol. 2014;36(1):8–15. doi:10.1097/MPH.0000000000000000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hearps S, Seal M, Anderson V, McCarthy M, Connellan M, Downie P, et al. The relationship between cognitive and neuroimaging outcomes in children treated for acute lymphoblastic leukemia with chemotherapy only: a systematic review. Pediatr Blood Cancer. 2017;64(2):225–33. doi:10.1002/pbc.26188.

    Article  PubMed  Google Scholar 

  79. Jacola LM, Krull KR, Pui CH, Pei D, Cheng C, Reddick WE, et al. Longitudinal assessment of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated on a contemporary chemotherapy protocol. J Clin Oncol. 2016;34(11):1239–47. doi:10.1200/JCO.2015.64.3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hochhauser CJ, Lewis M, Kamen BA, Cole PD. Steroid-induced alterations of mood and behavior in children during treatment for acute lymphoblastic leukemia. Support Care Cancer. 2005;13(12):967–74.

    Article  PubMed  Google Scholar 

  81. Strauss AJ, Su JT, Dalton VMK, Gelber RD, Sallan SE, Silverman LB. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol. 2001;19(12):3066–72.

    Article  CAS  PubMed  Google Scholar 

  82. Warner JT, Evans WD, Webb DKH, Bell W, Gregory JW. Relative Osteopenia after treatment for acute lymphoblastic leukemia. Pediatr Res. 1999;45(4, Part 1 of 2):544–51.

    Article  CAS  PubMed  Google Scholar 

  83. Wilson CL, Ness KK. Bone mineral density deficits and fractures in survivors of childhood cancer. Curr Osteoporos Rep. 2013;11(4):329–37. doi:10.1007/s11914-013-0165-0.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kunstreich M, Kummer S, Laws HJ, Borkhardt A, Kuhlen M. Osteonecrosis in children with acute lymphoblastic leukemia. Haematologica. 2016;101(11):1295–305. doi:10.3324/haematol.2016.147595.

    Article  PubMed  Google Scholar 

  85. Mattano LA, Devidas M, Chen S, Esiashvili N, Asselin B, Winick NJ, et al. Effect of high-dose methotrexate (HD-MTX) vs Capizzi methotrexate/pegaspargase (C-MTX/ASNase) on osteonecrosis (ON) incidence in children and young adults with T-acute lymphoblastic leukemia (T-ALL): results of Children’s Oncology Group (COG) Study AALL0434. Blood. 2014;124(21):3649.

    Google Scholar 

  86. Badhiwala JH, Nayiager T, Athale UH. The development of thromboembolism may increase the risk of osteonecrosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62(10):1851–4. doi:10.1002/pbc.25553.

    Article  CAS  PubMed  Google Scholar 

  87. Bond J, Adams S, Richards S, Vora A, Mitchell C, Goulden N. Polymorphism in the PAI-1 (SERPINE1) gene and the risk of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;118(9):2632–3.

    Article  CAS  PubMed  Google Scholar 

  88. Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;117(8):2340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, et al. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the Children’s Oncology Group. J Clin Oncol. 2014;32(7):647–53. doi:10.1200/JCO.2013.50.3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aminkeng F, Ross CJ, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–95. doi:10.1111/bcp.13008.

    Article  CAS  PubMed  Google Scholar 

  91. Chakrabarti R, Schuster S. L-asparaginase: perspectives on the mechanisms of action and resistance. International Journal of Pediatric Hematology/Oncology. 1997;4(6):597–611.

    Google Scholar 

  92. Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, et al. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117(2):238–49. doi:10.1002/cncr.25489.

    Article  CAS  PubMed  Google Scholar 

  93. Tanaka Y, Urayama KY, Kawaguchi T, Mori M, Hasegawa D, Ishimaru S, et al. The association between L-asparaginase hypersensitivity and genetic variants in Japanese childhood ALL patients. Blood. 2016;128(22):5141.

    Google Scholar 

  94. Wolthers BO, Frandsen TL, Abrahamsson J, Albertsen BK, Helt LR, Heyman M, et al. Asparaginase-associated pancreatitis: a study on phenotype and genotype in the NOPHO ALL2008 protocol. Leukemia. 2016; doi:10.1038/leu.2016.203.

    PubMed  Google Scholar 

  95. Fernandez CA, Smith C, Yang W, Liu C, Ramsey LB, Karol SE, et al. Genome-wide association study identifies PNPLA3 I148M variant associated with elevated transaminase levels after induction therapy in pediatric ALL patients. Blood. 2015;126(23):3714.

    Google Scholar 

  96. Marsh S, King CR, Ahluwalia R, McLeod HL. Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet. 2004;49(10):579–81. doi:10.1007/s10038-004-0183-y.

    Article  CAS  PubMed  Google Scholar 

  97. Hagleitner MM, Coenen MJ, Aplenc R, Patino-Garcia A, Chiusolo P, Gemmati D, et al. The role of the MTHFR 677C>T polymorphism in methotrexate-induced liver toxicity: a meta-analysis in patients with cancer. Pharmacogenomics J. 2014;14(2):115–9. doi:10.1038/tpj.2013.19.

    Article  CAS  PubMed  Google Scholar 

  98. den Hoed M, Lopez-Lopez E, Te Winkel ML, Tissing W, de Rooij J, Gutierrez-Camino A, et al. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. The pharmacogenomics journal. 2015;15(3):248–54.

    Article  CAS  Google Scholar 

  99. Liu S, Gao C, Zhang R, Zhao X, Cui L, Li W, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics and outcome in pediatric acute lymphoblastic leukemia in China. Blood. 2016;128(22):1595.

    Google Scholar 

  100. Asselin BL, Devidas M, Chen L, Franco VI, Pullen J, Borowitz MJ, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62. doi:10.1200/JCO.2015.60.8851.

    Article  CAS  PubMed  Google Scholar 

  101. Pengde K, Fuxing P, Bin S, Jing Y, Jingqiu C. Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits. Joint Bone Spine. 2008;75(6):696–701.

    Article  PubMed  Google Scholar 

  102. Pritchett JW. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin Orthop Relat Res. 2001;386:173–8.

    Article  Google Scholar 

  103. Cole PD, Vijayanathan V, Ali NF, Wagshul ME, Tanenbaum EJ, Price J, et al. Memantine protects rats treated with intrathecal methotrexate from developing spatial memory deficits. Clin Cancer Res. 2013;19(16):4446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Cole.

Ethics declarations

Conflict of Interest

Rochelle R. Maxwell and Peter D. Cole each declare no potential conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Topical Collection on Acute Lymphocytic Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maxwell, R.R., Cole, P.D. Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 12, 176–186 (2017). https://doi.org/10.1007/s11899-017-0376-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-017-0376-z

Keywords

Navigation