Skip to main content

Advertisement

Log in

Cutaneous T cell Lymphoma: an Update on Pathogenesis and Systemic Therapy

  • T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Mycosis fungoides (MF) and its leukemic variant, Sézary syndrome (SS), are malignancies of skin-homing T cells that comprise the majority of cutaneous T cell lymphomas (CTCL). Treatment of CTCL is limited and can be approached by skin-directed therapy or systemic therapy. Recent investigations into the pathogenesis of MF and SS have broadened the therapeutic targets; here, we review emerging concepts in the pathogenesis of MF and SS as well as novel and traditional systemic therapies for MF and SS. These include histone deacetylase inhibitors (vorinostat, romidepsin, panobinostat, and belinostat), monoclonal antibodies (alemtuzumab, brentuximab vedotin, and mogamulizumab) and single-agent cytotoxic chemotherapeutic agents (e.g., pralatrexate, doxorubicin, bendamustine, and forodesine), as well as multi-agent chemotherapy regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTCL:

Cutaneous T cell lymphoma

L-CTCL:

Leukemic CTCL

MF:

Mycosis fungoides

TCM :

Central memory T cell

TEM :

Effector memory T cell

HDAC:

Histone deacetylase

DAC:

Deacetylase

FDA:

Food and Drug Administration

PTCL:

Peripheral T cell lymphoma

ORR:

Overall response rate

GI:

Gastrointestinal

IV:

Intravenous

CR:

Complete response

PR:

Partial response

CLL:

Chronic lymphocytic leukemia

SC:

Subcutaneous

ALCL:

Anaplastic large cell lymphoma

PDX:

Pralatrexate

MTX:

Methotrexate

IFN:

Interferon

References

  1. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.

    Article  CAS  PubMed  Google Scholar 

  2. Clark RA, Watanabe R, Teague JE, et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Trans Med. 2012;4(117):117ra117.

  3. Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sézary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139(7):857–66.

    PubMed  Google Scholar 

  4. Hughes CF, Khot A, McCormack C, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sézary syndrome: a comparative study of systemic therapy. Blood. 2015;125(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  5. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708–12.

    Article  CAS  PubMed  Google Scholar 

  6. Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9.

    Article  CAS  PubMed  Google Scholar 

  7. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Duvic M, Edelson R. Cutaneous T-cell lymphoma. J Am Acad Dermatol. 2004;51(1 Suppl):S43–45.

    Article  PubMed  Google Scholar 

  9. Brazzelli V, Rivetti N, Badulli C, et al. Immunogenetic factors in mycosis fungoides: can the HLA system influence the susceptibility and prognosis of the disease? Long-term follow-up study of 46 patients. J Eur Acad Dermatol Venereol JEADV. 2014;28(12):1732–7.

    Article  CAS  PubMed  Google Scholar 

  10. Brazzelli V, Rivetti N, Badulli C, et al. Mycosis fungoides: association of KIR ligands and HLA-DQB1*05 with bad prognosis of the disease. Journal of the European Academy of Dermatology and Venereology : JEADV. Mar 9 2015.

  11. Zhang Y, Wang Y, Yu R, et al. Molecular markers of early-stage mycosis fungoides. J Investig Dermatol. 2012;132(6):1698–706.

    Article  CAS  PubMed  Google Scholar 

  12. Yu X, Luo Y, Liu J, Liu Y, Sun Q. TOX Acts an Oncological Role in Mycosis Fungoides. PLoS One. 2015;10(3):e0117479.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tang N, Gibson H, Germeroth T, Porcu P, Lim HW, Wong HK. T-plastin (PLS3) gene expression differentiates Sézary syndrome from mycosis fungoides and inflammatory skin diseases and can serve as a biomarker to monitor disease progression. Br J Dermatol. 2010;162(2):463–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ralfkiaer U, Lindahl LM, Litman T, et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res. 2014;34(12):7207–17.

    CAS  PubMed  Google Scholar 

  15. Duvic M, Dummer R, Becker JC, et al. Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer. 2013;49(2):386–94.

    Article  CAS  PubMed  Google Scholar 

  16. Poligone B, Lin J, Chung C. Romidepsin: evidence for its potential use to manage previously treated cutaneous T cell lymphoma. Core Evid. 2011;6:1–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Konstantinopoulos PA, Vandoros GP, Papavassiliou AG. FK228 (depsipeptide): a HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother Pharmacol. 2006;58(5):711–5.

    Article  CAS  PubMed  Google Scholar 

  18. Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol. 2007;74(5):659–71.

    Article  CAS  PubMed  Google Scholar 

  19. Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(12):3958–69.

    Article  CAS  Google Scholar 

  20. Mann BS, Johnson JR, He K, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(8):2318–22.

    Article  CAS  Google Scholar 

  21. Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J clin Oncol Off J Am Soc Clin Oncol. 2007;25(21):3109–15.

    Article  CAS  Google Scholar 

  22. Kim YH, Demierre MF, Kim EJ, et al. Clinically meaningful reduction in pruritus in patients with cutaneous T-cell lymphoma treated with romidepsin. Leuk Lymphoma. 2013;54(2):284–9.

    Article  CAS  PubMed  Google Scholar 

  23. Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589): Successes and challenges. Cancer Lett. 2009;280(2):233–41.

    Article  CAS  PubMed  Google Scholar 

  24. Steele NL, Plumb JA, Vidal L, et al. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(3):804–10.

    Article  CAS  Google Scholar 

  25. Foss F, Advani R, Duvic M, et al. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol. 2015;168(6):811–9.

    Article  CAS  PubMed  Google Scholar 

  26. Querfeld C, Mehta N, Rosen ST, et al. Alemtuzumab for relapsed and refractory erythrodermic cutaneous T-cell lymphoma: a single institution experience from the Robert H. Lurie Comprehensive Cancer Center. Leu Lymphoma. 2009;50(12):1969–76.

    Article  CAS  Google Scholar 

  27. Bernengo MG, Quaglino P, Comessatti A, et al. Low-dose intermittent alemtuzumab in the treatment of Sézary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92(6):784–94.

    Article  CAS  PubMed  Google Scholar 

  28. Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sézary syndrome. Blood. 2003;101(11):4267–72.

    Article  CAS  PubMed  Google Scholar 

  29. Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004;103(8):2920–4.

    Article  CAS  PubMed  Google Scholar 

  30. Kennedy GA, Seymour JF, Wolf M, et al. Treatment of patients with advanced mycosis fungoides and Sézary syndrome with alemtuzumab. Eur J Haematol. 2003;71(4):250–6.

    Article  CAS  PubMed  Google Scholar 

  31. de Masson A, Guitera P, Brice P, et al. Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br J Dermatol. 2014;170(3):720–4.

    Article  PubMed  Google Scholar 

  32. Martin SI, Marty FM, Fiumara K, Treon SP, Gribben JG, Baden LR. Infectious complications associated with alemtuzumab use for lymphoproliferative disorders. Clin Infect Dis Off Publ Infect Dis Soc Am. 2006;43(1):16–24.

    Article  CAS  Google Scholar 

  33. Watanabe R, Teague JE, Fisher DC, Kupper TS, Clark RA. Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma: diffuse erythema as a positive predictor of complete remission. JAMA Dermatol. 2014;150(7):776–9.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Benner MF, Jansen PM, Vermeer MH, Willemze R. Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood. 2012;119(7):1643–9.

    Article  CAS  PubMed  Google Scholar 

  35. Guenova E, Hoetzenecker W, Rozati S, Levesque MP, Dummer R, Cozzio A. Novel therapies for cutaneous T-cell lymphoma: what does the future hold? Expert Opin Investig Drugs. 2014;23(4):457–67.

    Article  CAS  PubMed  Google Scholar 

  36. Corey K, Cook D, Bekker J, Mugnaini E, Lin JH. A case of refractory Sézary syndrome with large-cell transformation responsive to brentuximab vedotin. JAMA Dermatol. 2014;150(2):210–2.

    Article  PubMed  Google Scholar 

  37. Criscuolo M, Fianchi L, Voso MT, Pagano L. Rapid response of nodular CD30-positive mycosis fungoides to brentuximab vedotin. Br J Haematol. 2015;168(5):617.

    Article  CAS  PubMed  Google Scholar 

  38. Duvic M, Tetzlaff MT, Clos AL, Gangar P, Talpur R. Phase II Trial Of Brentuximab Vedotin For CD30+ Cutaneous T-Cell Lymphomas and Lymphoproliferative Disorders. Paper presented at: 55th ASH Annual Meeting2013; New Orleans, LA.

  39. Mehra T, Ikenberg K, Moos RM, et al. Brentuximab as a treatment for CD30+ mycosis fungoides and Sézary syndrome. JAMA Dermatol. 2015;151(1):73–7.

    Article  PubMed  Google Scholar 

  40. Yamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(9):1591–8.

    Article  CAS  Google Scholar 

  41. Shinkawa T, Nakamura K, Yamane N, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biolo Chem. 2003;278(5):3466–73.

    Article  CAS  Google Scholar 

  42. Ishida T, Iida S, Akatsuka Y, et al. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-Cell leukemia/lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(22):7529–39.

    Article  CAS  Google Scholar 

  43. Ishida T, Inagaki H, Utsunomiya A, et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(16):5494–500.

    Article  CAS  Google Scholar 

  44. Hristov AC, Vonderheid EC, Borowitz MJ. Simplified flow cytometric assessment in mycosis fungoides and Sézary syndrome. Am J Clin Pathol. 2011;136(6):944–53.

    Article  PubMed  Google Scholar 

  45. Ishida T, Utsunomiya A, Iida S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(10 Pt 1):3625–34.

    CAS  Google Scholar 

  46. Ogura M, Ishida T, Hatake K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(11):1157–63.

    Article  CAS  Google Scholar 

  47. Duvic M, Pinter-Brown LC, Foss FM, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tanday S. Mogamulizumab benefits seen in cutaneous T-cell lymphoma. Lancet Oncol. 2015;16(5):e200.

    Article  PubMed  Google Scholar 

  49. Zackheim HS, Kashani-Sabet M, McMillan A. Low-dose methotrexate to treat mycosis fungoides: a retrospective study in 69 patients. J Am Acad Dermatol. 2003;49(5):873–8.

    Article  PubMed  Google Scholar 

  50. Duvic M, Talpur R, Wen S, Kurzrock R, David CL, Apisarnthanarax N. Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2006;7(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  51. DeGraw JI, Colwell WT, Piper JR, Sirotnak FM. Synthesis and antitumor activity of 10-propargyl-10-deazaaminopterin. J Med Chem. 1993;36(15):2228–31.

    Article  CAS  PubMed  Google Scholar 

  52. Wang ES, O'Connor O, She Y, Zelenetz AD, Sirotnak FM, Moore MA. Activity of a novel anti-folate (PDX, 10-propargyl 10-deazaaminopterin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression. LeukLymphoma. 2003;44(6):1027–35.

    Article  CAS  PubMed  Google Scholar 

  53. Hui J, Przespo E, Elefante A. Pralatrexate: a novel synthetic antifolate for relapsed or refractory peripheral T‐cell lymphoma and other potential uses. J Oncol Pharm Pract. 2012;18(2):275–83.

  54. Izbicka E, Diaz A, Streeper R, et al. Distinct mechanistic activity profile of pralatrexate in comparison to other antifolates in in vitro and in vivo models of human cancers. Cancer Chemother Pharmacol. 2009;64(5):993–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. O'Connor OA, Pro B, Pinter-Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(9):1182–9.

    Article  Google Scholar 

  56. Foss F, Horwitz SM, Coiffier B, et al. Pralatrexate is an effective treatment for relapsed or refractory transformed mycosis fungoides: a subgroup efficacy analysis from the PROPEL study. Clin Lymphoma Myeloma Leuk. 2012;12(4):238–43.

    Article  CAS  PubMed  Google Scholar 

  57. Horwitz SM, Kim YH, Foss F, et al. Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood. 2012;119(18):4115–22.

    Article  CAS  PubMed  Google Scholar 

  58. Talpur R, Thompson A, Gangar P, Duvic M. Pralatrexate alone or in combination with bexarotene: long-term tolerability in relapsed/refractory mycosis fungoides. Clin Lymphoma Myeloma Leuk. 2014;14(4):297–304.

    Article  PubMed  Google Scholar 

  59. Koch E, Story SK, Geskin LJ. Preemptive leucovorin administration minimizes pralatrexate toxicity without sacrificing efficacy. Leuk Lymphoma. 2013;54(11):2448–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Levi JA, Diggs CH, Wiernik PH. Adriamycin therapy in advanced mycosis fungoides. Cancer. 1977;39(5):1967–70.

    Article  CAS  PubMed  Google Scholar 

  61. Dummer R, Quaglino P, Becker JC, et al. Prospective international multicenter phase II trial of intravenous pegylated liposomal doxorubicin monochemotherapy in patients with stage IIB, IVA, or IVB advanced mycosis fungoides: final results from EORTC 21012. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(33):4091–7.

    Article  CAS  Google Scholar 

  62. Straus DJ, Duvic M, Horwitz SM, et al. Final results of phase II trial of doxorubicin HCl liposome injection followed by bexarotene in advanced cutaneous T-cell lymphoma. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2014;25(1):206–10.

    Article  CAS  Google Scholar 

  63. Damaj G, Gressin R, Bouabdallah K, et al. Results from a prospective, open-label, phase II trial of bendamustine in refractory or relapsed T-cell lymphomas: the BENTLY trial. J Clin Oncol. 2013;31(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  64. Zaja F, Baldini L, Ferreri AJ, et al. Bendamustine salvage therapy for T cell neoplasms. Ann Hematol. 2013;92(9):1249–54.

    Article  CAS  PubMed  Google Scholar 

  65. Hosoda T, Yokoyama A, Yoneda M, et al. Bendamustine can severely impair T-cell immunity against cytomegalovirus. Leuk Lymphoma. 2013;54(6):1327–8.

    Article  CAS  PubMed  Google Scholar 

  66. Gandhi V, Balakrishnan K. Pharmacology and mechanism of action of forodesine, a T-cell targeted agent. Semin Oncol. 2007;34(6 Suppl 5):S8–12.

    Article  CAS  PubMed  Google Scholar 

  67. Kicska GA, Long L, Horig H, et al. Immucillin H, a powerful transition-state analog inhibitor of purine nucleoside phosphorylase, selectively inhibits human T lymphocytes. Proc Natl Acad Sci U S A. 2001;98(8):4593–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Duvic M, Foss FM. Mycosis fungoides: pathophysiology and emerging therapies. Semin Oncol. 2007;34(6 Suppl 5):S21–28.

    Article  CAS  PubMed  Google Scholar 

  69. Bantia S, Miller PJ, Parker CD, et al. Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H)--a novel potent and orally active immunosuppressive agent. Int Immunopharmacol. 2001;1(6):1199–210.

    Article  CAS  PubMed  Google Scholar 

  70. Bantia S, Kilpatrick JM. Purine nucleoside phosphorylase inhibitors in T-cell malignancies. Curr Opin Drug Dis Dev. 2004;7(2):243–7.

    CAS  Google Scholar 

  71. Dummer R, Duvic M, Scarisbrick J, et al. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sézary syndrome). Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2014;25(9):1807–12.

    Article  CAS  Google Scholar 

  72. Lansigan F, Foss FM. Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs. 2010;70(3):273–86.

    Article  CAS  PubMed  Google Scholar 

  73. Duvic M, Forero-Torres A, Foss F, Olsen EA, Kim Y. Oral Forodesine (Bcx-1777) Is Clinically Active in Refractory Cutaneous T-Cell Lymphoma: Results of a Phase I/II Study. ASH Ann Meet Abstr. 2006;108(11):2467.

    Google Scholar 

  74. National Comprehensive Cancer Network (U.S.). The complete library of NCCN oncology practice guidelines. 2000. ed. Rockledge, PA: NCCN,; 2000.

  75. Savage KJ, Chhanabhai M, Gascoyne RD, Connors JM. Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2004;15(10):1467–75.

    Article  CAS  Google Scholar 

  76. Wilson WH, Bryant G, Bates S, et al. EPOCH chemotherapy: toxicity and efficacy in relapsed and refractory non-Hodgkin's lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 1993;11(8):1573–82.

    CAS  Google Scholar 

  77. Escalon MP, Liu NS, Yang Y, et al. Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M D.Anderson Cancer Center experience. Cancer. 2005;103(10):2091–8.

    Article  PubMed  Google Scholar 

  78. Mey UJ, Orlopp KS, Flieger D, et al. Dexamethasone, high-dose cytarabine, and cisplatin in combination with rituximab as salvage treatment for patients with relapsed or refractory aggressive non-Hodgkin's lymphoma. Cancer Investig. 2006;24(6):593–600.

    Article  CAS  Google Scholar 

  79. Velasquez WS, Cabanillas F, Salvador P, et al. Effective salvage therapy for lymphoma with cisplatin in combination with high-dose Ara-C and dexamethasone (DHAP). Blood. 1988;71(1):117–22.

    CAS  PubMed  Google Scholar 

  80. Velasquez WS, McLaughlin P, Tucker S, et al. ESHAP--an effective chemotherapy regimen in refractory and relapsing lymphoma: a 4-year follow-up study. J Clin Oncol Off J Am Soc Clin Oncol. 1994;12(6):1169–76.

    CAS  Google Scholar 

  81. Dong M, He XH, Liu P, et al. Gemcitabine-based combination regimen in patients with peripheral T-cell lymphoma. Med Oncol. 2013;30(1):351.

    Article  PubMed  Google Scholar 

  82. Crump M, Baetz T, Couban S, et al. Gemcitabine, dexamethasone, and cisplatin in patients with recurrent or refractory aggressive histology B-cell non-Hodgkin lymphoma: a Phase II study by the National Cancer Institute of Canada Clinical Trials Group (NCIC-CTG). Cancer. 2004;101(8):1835–42.

    Article  CAS  PubMed  Google Scholar 

  83. Lopez A, Gutierrez A, Palacios A, et al. GEMOX-R regimen is a highly effective salvage regimen in patients with refractory/relapsing diffuse large-cell lymphoma: a phase II study. Eur J Haematol. 2008;80(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  84. Calderon Cabrera C, de la Cruz VF, Marin-Niebla A, et al. Pentostatin plus cyclophosphamide and bexarotene is an effective and safe combination in patients with mycosis fungoides/Sézary syndrome. Br J Haematol. 2013;162(1):130–2.

    Article  CAS  PubMed  Google Scholar 

  85. Illidge T, Chan C, Counsell N, et al. Phase II study of gemcitabine and bexarotene (GEMBEX) in the treatment of cutaneous T-cell lymphoma. Br J Cancer. 2013;109(10):2566–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Dummer R, Beyer M, Hymes K, et al. Vorinostat combined with bexarotene for treatment of cutaneous T-cell lymphoma: in vitro and phase I clinical evidence supporting augmentation of retinoic acid receptor/retinoid X receptor activation by histone deacetylase inhibition. Leuk Lymphoma. 2012;53(8):1501–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Poligone.

Ethics declarations

Conflict of Interest

Catherine G. Chung and Brian Poligone each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on T-Cell and Other Lymphoproliferative Malignancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, C.G., Poligone, B. Cutaneous T cell Lymphoma: an Update on Pathogenesis and Systemic Therapy. Curr Hematol Malig Rep 10, 468–476 (2015). https://doi.org/10.1007/s11899-015-0293-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0293-y

Keywords

Navigation