Skip to main content

Advertisement

Log in

Cancer and Cardiovascular Disease: the Use of Novel Echocardiography Measures to Predict Subsequent Cardiotoxicity in Breast Cancer Treated with Anthracyclines and Trastuzumab

  • Prevention of Heart Failure (M St. John Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

As the population of breast cancer survivors grows, it has become evident that chemotherapy has significant cardiotoxic side effects. Echocardiography is a noninvasive, cost-effective, and widely available imaging tool that is well positioned to serve as a primary modality for monitoring chemotherapy-induced cardiotoxicity. Although left ventricular ejection fraction is a standard measurement by which to monitor chemotherapy-induced cardiotoxicity, its predictive value in identifying subsequent cardiotoxicity is limited. More sophisticated echocardiography modalities may offer improved sensitivity and specificity for detecting chemotherapy-induced cardiotoxicity. These include tissue Doppler imaging measures, newer techniques based upon two- and three-dimensional strain and torsion analysis, and three-dimensional measures of cardiac size. While these modalities are not all currently part of clinical practice, a body of data supporting their use is steadily building. More research remains to be performed, and noninvasively detecting cancer therapy-induced cardiac dysfunction at the earliest stages is of increasing interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance

  1. American Cancer Society. Cancer treatment and survivorship facts & figs. 2012–2013. Atlanta: American Cancer Society; 2012.

    Google Scholar 

  2. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol Elsevier Inc. 2012;60:2504–12.

    Article  CAS  Google Scholar 

  3. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clinic Oncol. 2008;26:3777–84.

    Article  Google Scholar 

  4. Rickard J, Kumbhani DJ, Baranowski B, Martin DO, Tang WH, Wilkoff BL. Usefulness of cardiac resynchronization therapy in patients with adriamycin-induced cardiomyopathy. Am J Cardiol. 2010;105:522–6.

    Article  CAS  PubMed  Google Scholar 

  5. Doyle JJ, Neugut AI, Jacobson JS, Grann VR, Hershman DL. Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. J Clin Oncol. 2005;23:8597–605.

    Article  PubMed  Google Scholar 

  6. Du XL, Xia R, Liu C-C, Cormier JN, Xing Y, Hardy D, et al. Cardiac toxicity associated with anthracycline-containing chemotherapy in older women with breast cancer. Cancer. 2009;115:5296–308.

    Article  PubMed  Google Scholar 

  7. Bowles EJA, Wellman R, Feigelson HS, Onitilo AA, Freedman AN, Delate T, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.

    Article  CAS  PubMed  Google Scholar 

  9. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart failure in the adult:. Circulation. 2005;112:e154–235.

  10. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42:736–42.

    Article  PubMed  Google Scholar 

  11. Moja L, Tagliabue L, Balduzzi S, Parmelli E, Pistotti V, Guarneri V, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;4, CD006243.

    PubMed  Google Scholar 

  12. Suter TM, Procter M, van Veldhuisen DJ, Muscholl M, Bergh J, Carlomagno C, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clinical Oncol. 2007;25:3859–65.

    Article  CAS  Google Scholar 

  13. Procter M, Suter TM, de Azambuja E, Dafni U, van Dooren V, Muehlbauer S, et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin adjuvant (HERA) trial. J Clinic Oncol. 2010;28:3422–8.

    Article  Google Scholar 

  14. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    Article  CAS  PubMed  Google Scholar 

  15. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709.

    Article  CAS  PubMed  Google Scholar 

  16. Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2–overexpressing breast cancer: NSABP B-31. J Clin Oncol Am Societ Clinic Oncol. 2005;23:7811–9.

    Article  CAS  Google Scholar 

  17. de Azambuja E, Procter MJ, van Veldhuisen DJ, Agbor-Tarh D, Metzger-Filho O, Steinseifer J, et al. Trastuzumab-Associated Cardiac Events at 8 Years of Median Follow-Up in the Herceptin Adjuvant Trial (BIG 1–01). Journal of Clinical Oncology. 2014; in press. The HERA trial is a large, randomized controlled trial studying the use of trastuzumab in 5102 patients with HER2 positive breast cancer. Unlike other pivotal adjuvant trastuzumab trials, HERA included patients receiving trastuzumab for both 1 year and 2 years. This study includes data from 8 years of follow-up.

  18. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ: Cardiovasc Imaging. 2012;5:596–603. This study demonstrates a role for longitudinal strain and biomarkers in the identification of patients at risk for subsequent cardiotoxicity with doxorubicin and trastuzumab therapy.

    Google Scholar 

  19. Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol. 1984;2:112–7.

    CAS  PubMed  Google Scholar 

  20. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association Of Echocardiography, a branch of the European Society Of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.

    Article  PubMed  Google Scholar 

  21. Shah AM, Solomon SD. Myocardial deformation imaging: current status and future directions. Circulation. 2012;125:e244–8.

    Article  PubMed  Google Scholar 

  22. Solomon SD, Anavekar N, Skali H, McMurray JJV, Swedberg K, Yusuf S, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112:3738–44.

    Article  PubMed  Google Scholar 

  23. Ewer MS, Lenihan DJ. Left ventricular ejection fraction and cardiotoxicity: is our ear really to the ground? J Clin Oncol. 2008;26:1201–3.

    Article  PubMed  Google Scholar 

  24. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EGE, Gietema JA. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol Elsevier Ltd. 2009;10:391–9.

    Article  CAS  Google Scholar 

  25. Cheng S-S, Dy TC, Feinstein SB. Contrast echocardiography: review and future directions. AJC. 1998;81:41G–8G.

    Article  CAS  Google Scholar 

  26. Hoffmann R, von Bardeleben S, ten Cate F, Borges AC, Kasprzak J, Firschke C, et al. Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. European Heart J. 2005;26:607–16.

    Article  Google Scholar 

  27. Jenkins C, Chan J, Hanekom L, Marwick TH. Accuracy and feasibility of online 3-dimensional echocardiography for measurement of left ventricular parameters. J Am Soc Echocardiogr. 2006;19:1119–28.

    Article  PubMed  Google Scholar 

  28. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. European Heart J Eur Soc Cardiol. 2009;30:98–106.

    Article  Google Scholar 

  29. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.

    Article  PubMed  Google Scholar 

  30. Hare JL, Brown JK, Leano R, Jenkins C, Woodward N, Marwick TH. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancertreatment with trastuzumab. Am Heart J. 2009;158:294–301.

    Article  CAS  PubMed  Google Scholar 

  31. Sanderson JE. Heart failure with a normal ejection fraction. Heart. 2007;93:155–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fang ZY, Leano R, Marwick TH. Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci. 2004;106:53–60.

    Article  PubMed  Google Scholar 

  33. Agricola E, Galderisi M, Oppizzi M, Schinkel AFL, Maisano F, De Bonis M, et al. Pulsed tissue Doppler imaging detects early myocardial dysfunction in asymptomatic patients with severe mitral regurgitation. Heart. 2004;90:406–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang M, Yip GWK, Wang AYM, Zhang Y, Ho PY, Tse MK, et al. Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J Am Coll Cardiol. 2003;41:820–6.

    Article  PubMed  Google Scholar 

  35. Wang M, Yip G, Yu C-M, Zhang Q, Zhang Y, Tse D, et al. Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. J Am Coll Cardiol. 2005;45:272–7.

    Article  PubMed  Google Scholar 

  36. Richartz BM, Werner GS, Ferrari M, Figulla HR. Comparison of left ventricular systolic and diastolic function in patients with idiopathic dilated cardiomyopathy and mild heart failure versus those with severe heart failure. AJC. 2002;90:390–4.

    Article  Google Scholar 

  37. Wang M, Yip GW, Wang AY, Zhang Y, Ho PY, Tse MK, et al. Tissue Doppler imaging provides incremental prognostic value in patients with systemic hypertension and left ventricular hypertrophy. J Hypertens. 2005;23:183–91.

    Article  PubMed  Google Scholar 

  38. Ho E, Brown A, Barrett P, Morgan RB, King G, Kennedy MJ, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart. 2010;96:701–7.

    Article  CAS  PubMed  Google Scholar 

  39. Tassan-Mangina S, Codorean D, Metivier M, Costa B, Himberlin C, Jouannaud C, et al. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr. 2006;7:141–6.

    Article  PubMed  Google Scholar 

  40. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57:2263–70.

    Article  CAS  PubMed  Google Scholar 

  41. Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol. 1995;26:135–6.

    CAS  PubMed  Google Scholar 

  42. Tei C, Nishimura RA, Seward JB, Tajik AJ. Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr. 1997;10:169–78.

    Article  CAS  PubMed  Google Scholar 

  43. Tei C, Dujardin KS, Hodge DO, Kyle RA, Tajik AJ, Seward JB. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol. 1996;28:658–64.

    Article  CAS  PubMed  Google Scholar 

  44. Bruch C, Schmermund A, Marin D, Katz M, Bartel T, Schaar J, et al. Tei-index in patients with mild-to-moderate congestive heart failure. European Heart J. 2000;21:1888–95.

    Article  CAS  Google Scholar 

  45. Dujardin KS, Tei C, Yeo TC, Hodge DO, Rossi A, Seward J. Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. AJC. 1998;82:1071–6.

    Article  CAS  Google Scholar 

  46. Yeo TC, Dujardin KS, Tei C, Mahoney DW, McGoon MD, Seward J. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. AJC. 1998;81:1157–61.

    Article  CAS  Google Scholar 

  47. Belham M, Kruger A, Mepham S, Faganello G, Pritchard C. Monitoring left ventricular function in adults receiving anthracycline-containing chemotherapy. Eur J Heart Fail. 2007;9:409–14.

    Article  CAS  PubMed  Google Scholar 

  48. Dodos F, Halbsguth T, Erdmann E, Hoppe UC. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97:318–26.

    Article  PubMed  Google Scholar 

  49. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JAC, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106:50–6.

    Article  PubMed  Google Scholar 

  50. Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol. 2006;47:1313–27.

    Article  PubMed  Google Scholar 

  51. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.

    Article  PubMed  Google Scholar 

  52. Antoni ML, Mollema SA, Delgado V, Atary JZ, Borleffs CJW, Boersma E, et al. Prognostic importance of strain and strain rate after acute myocardial infarction. European Heart J. 2010;31:1640–7.

    Article  Google Scholar 

  53. Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol Elsevier Inc. 2010;56:1812–22.

    Article  Google Scholar 

  54. Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013;61:2365–73.

    Article  PubMed  Google Scholar 

  55. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ. Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol Am College Cardiol Found. 2009;54:618–24.

    Article  Google Scholar 

  56. Mignot A, Donal E, Zaroui A, Reant P, Salem A, Hamon C, et al. Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J American Socie Echocardiograp Elsevier Inc. 2010;23:1019–24.

    Article  Google Scholar 

  57. Motoki H, Borowski AG, Shrestha K, Troughton RW, Tang WHW, Thomas JD, et al. Incremental prognostic value of assessing left ventricular myocardial mechanics in patients with chronic systolic heart failure. J Am Coll Cardiol Elsevier Inc. 2012;60:2074–81.

    Article  Google Scholar 

  58. Zhang KW, French B, May Khan A, Plappert T, Fang JC, Sweitzer NK. Strain improves risk prediction beyond ejection fraction in chronic systolic heart failure. J Am Heart Assoc. 2013. doi:10.1161/JAHA.113.000550.

    Google Scholar 

  59. Neilan TG, Jassal DS, Perez-Sanz TM, Raher MJ, Pradhan AD, Buys ES, et al. Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. European Heart J. 2006;27:1868–75.

    Article  Google Scholar 

  60. Mercuro G, Cadeddu C, Piras A, Dessi M, Madeddu C, Deidda M, et al. Early epirubicin-induced myocardial dysfunction revealed by serial tissue doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncol. 2007;12:1124–33.

    Article  CAS  Google Scholar 

  61. Appel JM, Sogaard P, Mortensen CE, Skagen K, Nielsen DL. Tissue-doppler assessment of cardiac left ventricular function during short-term adjuvant epirubicin therapy for breast cancer. J Am Socie Echocardiograp Elsevier Inc. 2011;24:200–6.

    Article  Google Scholar 

  62. Stoodley PW, Richards DAB, Boyd A, Hui R, Harnett PR, Meikle SR, et al. Left ventricular systolic function in HER2/neu negative breast cancer patients treated with anthracycline chemotherapy: a comparative analysis of left ventricular ejection fraction and myocardial strain imaging over 12 months. Eur J Cancer. 2013;49:3396–403.

    Article  CAS  PubMed  Google Scholar 

  63. Kang Y, Cheng L, Li L, Chen H, Sun M, Wei Z, et al. Early detection of anthracycline-induced cardiotoxicity using two-dimensional speckle tracking echocardiography. Cardiol J. 2013;20:592–9.

    Article  PubMed  Google Scholar 

  64. Mavinkurve-Groothuis AMC, Marcus KA, Pourier M, Loonen J, Feuth T, Hoogerbrugge PM, et al. Myocardial 2D strain echocardiography and cardiac biomarkers in children during and shortly after anthracycline therapy for acute lymphoblastic leukaemia (ALL): a prospective study. Eur Heart J Cardiovasc Imaging. 2013;14:562–9.

    Article  PubMed  Google Scholar 

  65. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Societ Echocardiograp Elsevier Inc. 2013;26:493–8. This study compares different echocardiograpic modalities, including LVEF, Sa, Ea, and strain, over time in a population of breast cancer patients. It also attempts to identify optimal cutpoints for maximal sensitivity and specificity for detecting cardiotoxicity.

    Article  Google Scholar 

  67. Motoki H, Koyama J, Nakazawa H, Aizawa K, Kasai H, Izawa A, et al. Torsion analysis in the early detection of anthracycline-mediated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;13:95–103.

    Article  PubMed  Google Scholar 

  68. Cheung Y-F, Li S-N, Chan GCF, Wong SJ, Ha S-Y. Left ventricular twisting and untwisting motion in childhood cancer survivors. Echocardiogr. 2011;28:738–45.

    Article  Google Scholar 

  69. Koopman LP, Slorach C, Manlhiot C, McCrindle BW, Jaeggi ET, Mertens L, et al. Assessment of myocardial deformation in children using digital imaging and communications in medicine (DICOM) data and vendor independent speckle tracking software. J Am Soc Echocardiogr Elsevier Inc. 2011;24:37–44.

    Article  Google Scholar 

  70. Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, et al. Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. J Am Soc Echocardiogr Elsevier Inc. 2012;25:1195–203.

    Article  Google Scholar 

  71. Marwick TH. Consistency of myocardial deformation imaging between vendors. European J Echocardiogr. 2010;11:414–6.

    Article  Google Scholar 

  72. Bovendeerd PHM, Kroon W, Delhaas T. Determinants of left ventricular shear strain. AJP: Heart Circulat Physiol. 2009;297:H1058–68.

    CAS  Google Scholar 

  73. Deng D, Jiao P, Ye X, Xia L. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput Mathemat Methods Med. 2012;2012:1–16.

    Article  Google Scholar 

  74. Tan TC, Scherrer-Crosbie M. Cardiac complications of chemotherapy: role of imaging. Curr Treat Options Cardiovasc Med. 2014;16:296.

    Article  PubMed  Google Scholar 

  75. Kang Y, Xu X, Cheng L, Li L, Sun M, Chen H, et al. Two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T in early detection and prediction of cardiotoxicity during epirubicine-based chemotherapy. Eur J Heart Fail. 2014;16:300–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yu H-K, Yu W, Cheuk DKL, Wong SJ, Chan GCF, Cheung Y-F. New three-dimensional speckle-tracking echocardiography identifies global impairment of left ventricular mechanics with a high sensitivity in childhood cancer survivors. J Am Societ Echocardiogr Elsevier Inc. 2013;26:846–52.

    Article  Google Scholar 

  77. Miyoshi T, Tanaka H, Kaneko A, Tatsumi K, Matsumoto K, Minami H. Left ventricular endocardial dysfunction in patients with preserved ejection fraction after receiving anthracycline. Echocardiogr. 2013. doi:10.1111/echo.12473.

    Google Scholar 

  78. Tanindi A, Demirci U, Tacoy G, Buyukberber S, Alsancak Y, Coskun U, et al. Assessment of right ventricular functions during cancer chemotherapy. Eur J Echocardiogr. 2011;12:834–40.

    Article  PubMed  Google Scholar 

  79. Grover S, Leong DP, Chakrabarty A, Joerg L, Kotasek D, Cheong K, et al. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol. 2013;168:5465–7.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Gaurav Gulati, Kathleen W. Zhang, Marielle Scherrer-Crosbie, and Bonnie Ky declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marielle Scherrer-Crosbie or Bonnie Ky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, G., Zhang, K.W., Scherrer-Crosbie, M. et al. Cancer and Cardiovascular Disease: the Use of Novel Echocardiography Measures to Predict Subsequent Cardiotoxicity in Breast Cancer Treated with Anthracyclines and Trastuzumab. Curr Heart Fail Rep 11, 366–373 (2014). https://doi.org/10.1007/s11897-014-0214-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0214-8

Keywords

Navigation