Skip to main content

Advertisement

Log in

Advanced Imaging for Barrett’s Esophagus and Early Neoplasia: Surface and Subsurface Imaging for Diagnosis and Management

  • Esophagus (J Clarke and N Ahuja, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Esophageal adenocarcinoma bears one of the fastest rising incidence of any cancers and generally arises in the setting of gastroesophageal reflux and Barrett’s esophagus. However, early detection of neoplasia can be challenging since most patients are asymptomatic until they progress to more advanced and less curable stages, and early dysplastic lesions can be small, multifocal, and difficult to detect. Clearly, new imaging tools are needed in light of sampling error associated with random biopsies, the current standard of practice.

Recent Findings

Advances in endoscopic imaging including virtual chromoendoscopy, confocal laser endomicroscopy, and subsurface imaging with optical coherence tomography have ushered in a new era for detecting subtle neoplastic lesions. Moreover, in light of esophagus-sparing treatments for neoplastic lesions, such tools are likely to guide ablation and follow-up management.

Summary

While there is no ideal single imaging modality to facilitate improved detection, staging, ablation, and follow-up of patients with dysplastic Barrett’s esophagus, new advances in available technology, the potential for multimodal imaging, and the use of computer-aided diagnosis and biomarkers all hold great promise for improving detection and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFI :

autofluorescence imaging

APC :

argon plasma coagulation

a/LCI :

angle-resolved low-coherence interferometry

BE :

Barrett’s esophagus

BING :

Barrett’s International NBI Group

BLI :

blue laser imaging

CAD :

computer-aided diagnosis

CE :

chromoendoscopy

CLE :

confocal laser endomicroscopy

CT :

computed tomography

eCLE :

endoscopic CLE

EAC :

esophageal adenocarcinoma

EMR :

endoscopic mucosal resection

EPSS :

endoscopic polarized scanning spectroscopy

ESD :

endoscopic submucosal dissection

ESS :

elastic-scattering spectroscopy

ETMI :

endoscopic trimodal imaging

EUS :

endoscopic ultrasound

FICE :

flexible spectral imaging color enhancement

FLOT :

fluorescence laminar optical tomography

FNA :

fine needle aspiration

GERD :

gastroesophageal reflux disease

HGD :

high-grade dysplasia

LGD :

low-grade dysplasia

LSS :

light-scattering spectroscopy

MB :

methylene blue

MEMS :

microelectromechanical systems

NBI :

narrow-band imaging

NPV :

negative predictive value

OCT :

optical coherence tomography

OCT-A :

optical coherence tomography and angiography

OCT-TC :

optical coherence tomography tethered capsule

OCT-SI :

optical coherence tomography scoring index

PAT :

photoacoustic tomography

pCLE :

probe-based confocal laser endoscopy

PET :

positron emission tomography

PIVI :

Preservation and Incorporation of Valuable Endoscopic Innovation

PPV :

positive predictive value

PS-OCT :

polarization-sensitive optical coherence tomography

RFA :

radiofrequency ablation

VLE :

volumetric laser endomicroscopy

TB :

targeted biopsies

VLE :

volumetric laser endomicroscopy

VLE-DA :

volumetric laser endomicroscopy diagnostic algorithm

WATS :

wide-area transepithelial sampling

WLE :

white light endoscopy

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Castell DO, Katzka DA. Barrett’s esophagus: continuing questions and controversy. Gastrointest Endosc. 1999;49:S5–8.

    CAS  PubMed  Google Scholar 

  2. Kuipers EJ. Barrett esophagus and life expectancy: implications for screening? Gastroenterol Hepatol (N Y). 2011;7:689–91.

    Google Scholar 

  3. Shaheen NJ, Falk GW, Iyer PG, et al. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol. 2016;111:30–50 quiz 51.

    CAS  PubMed  Google Scholar 

  4. Mashimo H. Subsquamous intestinal metaplasia after ablation of Barrett’s esophagus: frequency and importance. Curr Opin Gastroenterol. 2013;29:454–9.

    PubMed  Google Scholar 

  5. Visrodia K, Singh S, Krishnamoorthi R, et al. Magnitude of missed esophageal adenocarcinoma after Barrett’s esophagus diagnosis: a systematic review and meta-analysis. Gastroenterology. 2016;150:599–607 e7 quiz e14–5.

    PubMed  Google Scholar 

  6. Corley DA, Mehtani K, Quesenberry C, et al. Impact of endoscopic surveillance on mortality from Barrett’s esophagus-associated esophageal adenocarcinomas. Gastroenterology. 2013;145:312–9 e1.

    PubMed  PubMed Central  Google Scholar 

  7. Committee AT, Wong Kee Song LM, Adler DG, et al. Chromoendoscopy. Gastrointest Endosc. 2007;66:639–49.

    Google Scholar 

  8. Connor MJ, Sharma P. Chromoendoscopy and magnification endoscopy for diagnosing esophageal cancer and dysplasia. Thorac Surg Clin. 2004;14:87–94.

    PubMed  Google Scholar 

  9. Breyer HP, Silva De Barros SG, Maguilnik I, et al. Does methylene blue detect intestinal metaplasia in Barrett’s esophagus? Gastrointest Endosc. 2003;57:505–9.

    PubMed  Google Scholar 

  10. Trivedi PJ, Braden B. Indications, stains and techniques in chromoendoscopy. QJM. 2013;106:117–31.

    CAS  PubMed  Google Scholar 

  11. Yagi K, Nakamura A, Sekine A. Accuracy of magnifying endoscopy with methylene blue in the diagnosis of specialized intestinal metaplasia and short-segment Barrett’s esophagus in Japanese patients without Helicobacter pylori infection. Gastrointest Endosc. 2003;58:189–95.

    PubMed  Google Scholar 

  12. Sturmey RG, Wild CP, Hardie LJ. Removal of red light minimizes methylene blue-stimulated DNA damage in oesophageal cells: implications for chromoendoscopy. Mutagenesis. 2009;24:253–8.

    CAS  PubMed  Google Scholar 

  13. Ngamruengphong S, Sharma VK, Das A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: a meta-analysis. Gastrointest Endosc. 2009;69:1021–8.

    PubMed  Google Scholar 

  14. Lambert R, Rey JF, Sankaranarayanan R. Magnification and chromoscopy with the acetic acid test. Endoscopy. 2003;35:437–45.

    CAS  PubMed  Google Scholar 

  15. ASGE Technology Committee, Manfredi MA, Abu Dayyeh BK, et al. Electronic chromoendoscopy. Gastrointest Endosc. 2015;81:249–61.

    Google Scholar 

  16. Kuznetsov K, Lambert R, Rey JF. Narrow-band imaging: potential and limitations. Endoscopy. 2006;38:76–81.

    CAS  PubMed  Google Scholar 

  17. Sharma P, Hawes RH, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;62:15–21.

    PubMed  Google Scholar 

  18. ASGE Technology C, Song LM, Adler DG, et al. Narrow band imaging and multiband imaging. Gastrointest Endosc. 2008;67:581–9.

    Google Scholar 

  19. Sharma P, Bergman JJ, Goda K, et al. Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus using narrow-band imaging. Gastroenterology. 2016;150:591–8.

    PubMed  Google Scholar 

  20. Nogales O, Caballero-Marcos A, Clemente-Sanchez A, et al. Usefulness of non-magnifying narrow band imaging in EVIS EXERA III video systems and high-definition endoscopes to diagnose dysplasia in Barrett’s esophagus using the Barrett International NBI Group (BING) classification. Dig Dis Sci. 2017;62:2840–6.

    CAS  PubMed  Google Scholar 

  21. Osawa H, Yamamoto H. Present and future status of flexible spectral imaging color enhancement and blue laser imaging technology. Dig Endosc. 2014;26(Suppl 1):105–15.

    PubMed  Google Scholar 

  22. Kiesslich R, Jung M. Magnification endoscopy: does it improve mucosal surface analysis for the diagnosis of gastrointestinal neoplasias? Endoscopy. 2002;34:819–22.

    CAS  PubMed  Google Scholar 

  23. Sharma P, Weston AP, Topalovski M, et al. Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett’s oesophagus. Gut. 2003;52:24–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumagai Y, Takubo K, Kawada K, et al. A newly developed continuous zoom-focus endocytoscope. Endoscopy. 2017;49:176–80.

    PubMed  Google Scholar 

  25. Kumagai Y, Monma K, Kawada K. Magnifying chromoendoscopy of the esophagus: in-vivo pathological diagnosis using an endocytoscopy system. Endoscopy. 2004;36:590–4.

    CAS  PubMed  Google Scholar 

  26. Committee AT, Song LM, Banerjee S, et al. Autofluorescence imaging. Gastrointest Endosc. 2011;73:647–50.

    Google Scholar 

  27. di Pietro M, Boerwinkel DF, Shariff MK, et al. The combination of autofluorescence endoscopy and molecular biomarkers is a novel diagnostic tool for dysplasia in Barrett’s oesophagus. Gut. 2015;64:49–56.

    PubMed  Google Scholar 

  28. Curvers WL, Singh R, Song LM, et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut. 2008;57:167–72.

    CAS  PubMed  Google Scholar 

  29. Graham DG, Banks MR Advances in upper gastrointestinal endoscopy. F1000Res 2015;4.

  30. Sharma P, Brill J, Canto M, et al. White paper AGA: advanced imaging in Barrett’s esophagus. Clin Gastroenterol Hepatol. 2015;13:2209–18.

    PubMed  Google Scholar 

  31. Zuccaro G, Gladkova N, Vargo J, et al. Optical coherence tomography of the esophagus and proximal stomach in health and disease. Am J Gastroenterol. 2001;96:2633–9.

    CAS  PubMed  Google Scholar 

  32. Lowe VJ, Booya F, Fletcher JG, et al. Comparison of positron emission tomography, computed tomography, and endoscopic ultrasound in the initial staging of patients with esophageal cancer. Mol Imaging Biol. 2005;7:422–30.

    PubMed  Google Scholar 

  33. Committee AT. Confocal laser endomicroscopy. Gastrointest Endosc. 2014;80:928–38.

    Google Scholar 

  34. Leggett CL, Gorospe EC. Application of confocal laser endomicroscopy in the diagnosis and management of Barrett’s esophagus. Ann Gastroenterol. 2014;27:193–9.

    PubMed  PubMed Central  Google Scholar 

  35. Canto MI, Anandasabapathy S, Brugge W, et al. In vivo endomicroscopy improves detection of Barrett’s esophagus-related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointest Endosc. 2014;79:211–21.

    PubMed  Google Scholar 

  36. Neumann WL, Lujan GM, Genta RM. Gastric heterotopia in the proximal oesophagus (“inlet patch”): Association with adenocarcinomas arising in Barrett mucosa. Dig Liver Dis. 2012;44:292–6.

    PubMed  Google Scholar 

  37. Wallace MB, Meining A, Canto MI, et al. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther. 2010;31:548–52.

    CAS  PubMed  Google Scholar 

  38. Li CQ, Yu T, Zuo XL, et al. Effects on confocal laser endomicroscopy image quality by different acriflavine concentrations. J Interv Gastroenterol. 2011;1:59–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. George M, Meining A. Cresyl violet as a fluorophore in confocal laser scanning microscopy for future in-vivo histopathology. Endoscopy. 2003;35:585–9.

    CAS  PubMed  Google Scholar 

  40. Kiesslich R, Gossner L, Goetz M, et al. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol. 2006;4:979–87.

    PubMed  Google Scholar 

  41. Sharma P, Meining AR, Coron E, et al. Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc. 2011;74:465–72.

    PubMed  PubMed Central  Google Scholar 

  42. Bertani H, Frazzoni M, Dabizzi E, et al. Improved detection of incident dysplasia by probe-based confocal laser endomicroscopy in a Barrett’s esophagus surveillance program. Dig Dis Sci. 2013;58:188–93.

    PubMed  Google Scholar 

  43. Wallace M, Lauwers GY, Chen Y, et al. Miami classification for probe-based confocal laser endomicroscopy. Endoscopy. 2011;43:882–91.

    CAS  PubMed  Google Scholar 

  44. Gaddam S, Mathur SC, Singh M, et al. Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of dysplasia in Barrett’s esophagus. Am J Gastroenterol. 2011;106:1961–9.

    PubMed  Google Scholar 

  45. Tofteland N, Singh M, Gaddam S, et al. Evaluation of the updated confocal laser endomicroscopy criteria for Barrett’s esophagus among gastrointestinal pathologists. Dis Esophagus. 2014;27:623–9.

    CAS  PubMed  Google Scholar 

  46. Caillol F, Godat S, Poizat F, et al. Probe confocal laser endomicroscopy in the therapeutic endoscopic management of Barrett’s dysplasia. Ann Gastroenterol. 2017;30:295–301.

    PubMed  PubMed Central  Google Scholar 

  47. Gupta A, Attar BM, Koduru P, et al. Utility of confocal laser endomicroscopy in identifying high-grade dysplasia and adenocarcinoma in Barrett’s esophagus: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2014;26:369–77.

    PubMed  Google Scholar 

  48. Wu J, Pan YM, Wang TT, et al. Confocal laser endomicroscopy for detection of neoplasia in Barrett’s esophagus: a meta-analysis. Dis Esophagus. 2014;27:248–54.

    CAS  PubMed  Google Scholar 

  49. • Xiong YQ, Ma SJ, Zhou JH, et al. A meta-analysis of confocal laser endomicroscopy for the detection of neoplasia in patients with Barrett's esophagus. J Gastroenterol Hepatol. 2016;31:1102–10 A meta-analysis showing that CLE significantly increases the detection of esophageal neoplasia compared to NBI.

    PubMed  Google Scholar 

  50. Xiong YQ, Ma SJ, Hu HY, et al. Comparison of narrow-band imaging and confocal laser endomicroscopy for the detection of neoplasia in Barrett’s esophagus: a meta-analysis. Clin Res Hepatol Gastroenterol. 2018;42:31–9.

    PubMed  Google Scholar 

  51. Wallace MB, Crook JE, Saunders M, et al. Multicenter, randomized, controlled trial of confocal laser endomicroscopy assessment of residual metaplasia after mucosal ablation or resection of GI neoplasia in Barrett's esophagus. Gastrointest Endosc. 2012;76:539–47 e1.

    PubMed  Google Scholar 

  52. Evans JA, Poneros JM, Bouma BE, et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4:38–43.

    PubMed  PubMed Central  Google Scholar 

  53. Leggett CL, Gorospe EC, Chan DK, et al. Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus. Gastrointest Endosc. 2016;83:880–8 e2.

    PubMed  Google Scholar 

  54. Gupta N, Siddiqui U, Waxman I, et al. Use of volumetric laser endomicroscopy for dysplasia detection at the gastroesophageal junction and gastric cardia. World J Gastrointest Endosc. 2017;9:319–26.

    PubMed  PubMed Central  Google Scholar 

  55. Swager AF, de Groof AJ, Meijer SL, et al. Feasibility of laser marking in Barrett’s esophagus with volumetric laser endomicroscopy: first-in-man pilot study. Gastrointest Endosc. 2017;86:464–72.

    PubMed  Google Scholar 

  56. Trindade AJ, Inamdar S, Smith MS, et al. Learning curve and competence for volumetric laser endomicroscopy in Barrett’s esophagus using cumulative sum analysis. Endoscopy 2017.

  57. Trindade AJ, Inamdar S, Smith MS, et al. Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users. Gastrointest Endosc. 2017;86:133–9.

    PubMed  Google Scholar 

  58. Kohli DR, Schubert ML, Zfass AM, et al. Performance characteristics of optical coherence tomography in assessment of Barrett’s esophagus and esophageal cancer: systematic review. Dis Esophagus. 2017;30:1–8.

    CAS  PubMed  Google Scholar 

  59. • Swager AF, van der Sommen F, Klomp SR, et al. Computer-aided detection of early Barrett's neoplasia using volumetric laser endomicroscopy. Gastrointest Endosc. 2017;86:839–46 Initial report of CAD for VLE images to detect neoplastic lesions in BE achieving 90% sensitivity and 93% specificity on paired images and histology. This awaits prospective clinical application.

    PubMed  Google Scholar 

  60. Swager AF, Faber DJ, de Bruin DM, et al. Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy. J Biomed Opt. 2017;22:86001.

    PubMed  Google Scholar 

  61. • Alshelleh M, Inamdar S, McKinley M, et al. Incremental yield of dysplasia detection in Barrett’s esophagus using volumetric laser endomicroscopy with and without laser marking compared with a standardized random biopsy protocol. Gastrointest Endosc 2018. Evidence for increased yield of dysplasia and neoplasia using VLE and laser marking over standard biopsy protocol.

  62. Shaheen NJ, Sharma P, Overholt BF, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360:2277–88.

    CAS  PubMed  Google Scholar 

  63. Luigiano C, Iabichino G, Eusebi LH, et al. Outcomes of radiofrequency ablation for dysplastic Barrett’s esophagus: a comprehensive review. Gastroenterol Res Pract. 2016;4249510:2016.

    Google Scholar 

  64. Tsai TH, Zhou C, Tao YK, et al. Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett’s esophagus radiofrequency ablation treatment response (with videos). Gastrointest Endosc. 2012;76:1104–12.

    PubMed  PubMed Central  Google Scholar 

  65. Tsai TH, Zhou C, Lee HC, et al. Comparison of tissue architectural changes between radiofrequency ablation and cryospray ablation in Barrett’s esophagus using endoscopic three-dimensional optical coherence tomography. Gastroenterol Res Pract. 2012;684832:2012.

    Google Scholar 

  66. Lee HC, Ahsen OO, Liu JJ, et al. Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography. J Biomed Opt. 2017;22:76001.

    PubMed  Google Scholar 

  67. Adler DC, Zhou C, Tsai TH, et al. Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation. Endoscopy. 2009;41:773–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Basavappa M, Weinberg A, Huang Q, et al. Markers suggest reduced malignant potential of subsquamous intestinal metaplasia compared with Barrett’s esophagus. Dis Esophagus. 2014;27:262–6.

    CAS  PubMed  Google Scholar 

  69. Ughi GJ, Gora MJ, Swager AF, et al. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed Opt Express. 2016;7:409–19.

    PubMed  PubMed Central  Google Scholar 

  70. Liang K, Ahsen OO, Lee HC, et al. Volumetric mapping of Barrett’s esophagus and dysplasia with en face optical coherence tomography tethered capsule. Am J Gastroenterol. 2016;111:1664–6.

    PubMed  PubMed Central  Google Scholar 

  71. Standish BA, Lee KK, Mariampillai A, et al. In vivo endoscopic multi-beam optical coherence tomography. Phys Med Biol. 2010;55:615–22.

    PubMed  Google Scholar 

  72. Ahsen OO, Lee HC, Giacomelli MG, et al. Correction of rotational distortion for catheter-based en face OCT and OCT angiography. Opt Lett. 2014;39:5973–6.

    PubMed  PubMed Central  Google Scholar 

  73. Tsai TH, Lee HC, Ahsen OO, et al. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology. Biomed Opt Express. 2014;5:4387–404.

    PubMed  PubMed Central  Google Scholar 

  74. Lee HC, Ahsen OO, Liang K, et al. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett’s esophagus (with video). Gastrointest Endosc. 2017;86:476–84 e3.

    PubMed  PubMed Central  Google Scholar 

  75. Ahsen OO, Lee HC, Liang K, et al. Ultrahigh-speed endoscopic optical coherence tomography and angiography enables delineation of lateral margins of endoscopic mucosal resection: a case report. Ther Adv Gastroenterol. 2017;10:931–6.

    Google Scholar 

  76. Chen C, Cheng KH, Jakubovic R, et al. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging. Opt Express. 2017;25:7761–77.

    PubMed  Google Scholar 

  77. Liang K, Ahsen OO, Wang Z, et al. Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source. Opt Lett. 2017;42:3193–6.

    PubMed  PubMed Central  Google Scholar 

  78. • Zhao Y, Eldridge WJ, Maher JR, et al. Dual-axis optical coherence tomography for deep tissue imaging. Opt Lett. 2017;42:2302–5 Recent example of multimodal imaging combining improvement in LCI with OCT for enhanced imaging on animal models.

    PubMed  PubMed Central  Google Scholar 

  79. Villiger M, Lorenser D, McLaughlin RA, et al. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour. Sci Rep. 2016;6:28771.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang S, Ma T, Jing J, et al. Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Opt Lett. 2014;39:6652–5.

    PubMed  PubMed Central  Google Scholar 

  81. Lee D, Lee C, Kim S, et al. In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography. Sci Rep. 2016;6:35176.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shang S, Chen Z, Zhao Y, et al. Simultaneous imaging of atherosclerotic plaque composition and structure with dual-mode photoacoustic and optical coherence tomography. Opt Express. 2017;25:530–9.

    CAS  PubMed  Google Scholar 

  83. Tang Q, Wang J, Frank A, et al. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography. Biomed Opt Express. 2016;7:5218–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen Z, Yang S, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging. Opt Lett. 2016;41:1636–9.

    PubMed  Google Scholar 

  85. Qi X, Pan Y, Sivak MV, et al. Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. Biomed Opt Express. 2010;1:825–47.

    PubMed  PubMed Central  Google Scholar 

  86. Qiu L, Pleskow DK, Chuttani R, et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat Med. 2010;16:603–6 1p following 606.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wax A, Terry NG, Dellon ES, et al. Angle-resolved low coherence interferometry for detection of dysplasia in Barrett’s esophagus. Gastroenterology. 2011;141:443–7 447 e1–2.

    PubMed  PubMed Central  Google Scholar 

  88. • Steelman ZA, Ho D, Chu KK, et al. Scanning system for angle-resolved low-coherence interferometry. Opt Lett. 2017;42:4581–4 Recent advance in LCI allowing for broader field of view.

    PubMed  PubMed Central  Google Scholar 

  89. Kim S, Heflin S, Kresty LA, et al. Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography. Biomed Opt Express. 2016;7:1400–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lovat LB, Johnson K, Mackenzie GD, et al. Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus. Gut. 2006;55:1078–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pan QJ, Roth MJ, Guo HQ, et al. Cytologic detection of esophageal squamous cell carcinoma and its precursor lesions using balloon samplers and liquid-based cytology in asymptomatic adults in Llinxian, China. Acta Cytol. 2008;52:14–23.

    PubMed  Google Scholar 

  92. • Moinova HR, LaFramboise T, Lutterbaugh JD, et al. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett’s esophagus. Sci Transl Med 2018;10. Introduction of a swallowable balloon-based sampling device for non-endoscopic BE screening with detection of abnormal cytosine methylation in the CCNA1 and vimentin DNA loci which, together, detects BE with 90.3% sensitivity and 91.7% specificity.

  93. Becker L, Huang Q, Mashimo H. Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus. 2010;23:168–74.

    CAS  PubMed  Google Scholar 

  94. Bennett M, Mashimo H. Molecular markers and imaging tools to identify malignant potential in Barrett’s esophagus. World J Gastrointest Pathophysiol. 2014;5:438–49.

    PubMed  PubMed Central  Google Scholar 

  95. Vennalaganti PR, Naag Kanakadandi V, Gross SA, et al. Inter-observer agreement among pathologists using wide-area transepithelial sampling with computer-assisted analysis in patients with Barrett’s esophagus. Am J Gastroenterol. 2015;110:1257–60.

    PubMed  Google Scholar 

  96. Critchley-Thorne RJ, Davison JM, Prichard JW, et al. A Tissue systems pathology test detects abnormalities associated with prevalent high-grade dysplasia and esophageal cancer in Barrett’s esophagus. Cancer Epidemiol Biomark Prev. 2017;26:240–8.

    CAS  Google Scholar 

  97. Hsiung PL, Wang T. In vivo biomarkers for targeting colorectal neoplasms. Cancer Biomark. 2008;4:329–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Technology Committee ASGE, Thosani N, Abu Dayyeh BK, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE Preservation and Incorporation of Valuable Endoscopic Innovations thresholds for adopting real-time imaging-assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett's esophagus. Gastrointest Endosc. 2016;83:684–98 e7.

    Google Scholar 

  99. • Scholvinck DW, van der Meulen K, Bergman J, et al. Detection of lesions in dysplastic Barrett’s esophagus by community and expert endoscopists. Endoscopy. 2017;49:113–20 Another more recent study showing poorer endoscopic detection of dysplastic and neoplastic BE in community hospitals compared to expert centers.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Mashimo.

Ethics declarations

Conflict of Interest

Mansoureh Mkarimi declares no conflict of interest. Hiroshi Mashimo reports grants from Ninepoint Medical, outside the submitted work, and has a patent pending (No. 61/987,80 for a novel catheter design, “Scanning Optical Probe,” that is being used with the OCT technology in this study which is ongoing).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Esophagus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkarimi, M., Mashimo, H. Advanced Imaging for Barrett’s Esophagus and Early Neoplasia: Surface and Subsurface Imaging for Diagnosis and Management. Curr Gastroenterol Rep 20, 54 (2018). https://doi.org/10.1007/s11894-018-0661-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-018-0661-6

Keywords

Navigation