Skip to main content
Log in

Stem Cell Therapy for GI Neuromuscular Disorders

  • Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The enteric nervous system is the intrinsic innervation of the gut. Several neuromuscular disorders affect the neurons and glia of the enteric nervous system adversely, resulting in disruptions in gastrointestinal motility and function. Pharmacological interventions to remedy gastrointestinal function do not address the underlying cause of dysmotility arising from lost, absent, or damaged enteric neuroglial circuitry. Cell-based therapies have gained traction in the past decade, following the discovery of several adult stem cell niches in the human body. Adult neural stem cells can be isolated from the postnatal and adult intestine using minimally invasive biopsies. These stem cells retain the ability to differentiate into several functional classes of enteric neurons and enteric glia. Upon identification of these cells, several groups have also established that transplantation of these cells into aganglionic or dysganglionic intestine rescues gastrointestinal motility and function. This chapter highlights key studies performed in the field of stem cell transplantation therapies that are targeted towards the remedy of gastrointestinal motility and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Furness JB. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil. 2008;20 Suppl 1:32–8.

    Article  PubMed  Google Scholar 

  2. Gabella G. Innervation of the intestinal muscular coat. J Neurocytol. 1972;1:341–62.

    Article  CAS  PubMed  Google Scholar 

  3. Goyal RK, Hirano I. The enteric nervous system. N Engl J Med. 1996;334:1106–15.

    Article  CAS  PubMed  Google Scholar 

  4. Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 2012;22:288–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol. 1993;24:199–214.

    Article  CAS  PubMed  Google Scholar 

  6. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.

    Article  CAS  PubMed  Google Scholar 

  7. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007;8:466–79.

    Article  CAS  PubMed  Google Scholar 

  8. Arshad A, Powell C, Tighe MP. Hirschsprung’s disease. BMJ. 2012;345:e5521.

    Article  CAS  PubMed  Google Scholar 

  9. Chandrasekharan B, Srinivasan S. Diabetes and the enteric nervous system. Neurogastroenterol Motil. 2007;19:951–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. De Giorgio R, Guerrini S, Barbara G, Stanghellini V, De Ponti F, Corinaldesi R, et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology. 2004;126:1872–83.

    Article  PubMed  Google Scholar 

  11. De Giorgio R, Camilleri M. Human enteric neuropathies: morphology and molecular pathology. Neurogastroenterol Motil. 2004;16:515–31.

    Article  PubMed  Google Scholar 

  12. Bitar K, Greenwood-Van Meerveld B, Saad R, Wiley JW. Aging and gastrointestinal neuromuscular function: insights from within and outside the gut. Neurogastroenterol Motil. 2011;23:490–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. De Giorgio R, Di Simone MP, Stanghellini V, Barbara G, Tonini M, Salvioli B, et al. Esophageal and gastric nitric oxide synthesizing innervation in primary achalasia. Am J Gastroenterol. 1999;94:2357–62.

    Article  PubMed  Google Scholar 

  14. Pasricha PJ, Pehlivanov ND, Gomez G, Vittal H, Lurken MS, Farrugia G. Changes in the gastric enteric nervous system and muscle: a case report on two patients with diabetic gastroparesis. BMC Gastroenterol. 2008;8:21.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Takahashi T, Nakamura K, Itoh H, Sima AA, Owyang C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology. 1997;113:1535–44.

    Article  CAS  PubMed  Google Scholar 

  16. Baillie CT, Kenny SE, Rintala RJ, Booth JM, Lloyd DA. Long-term outcome and colonic motility after the Duhamel procedure for Hirschsprung’s disease. J Pediatr Surg. 1999;34:325–9.

    Article  CAS  PubMed  Google Scholar 

  17. Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362:200–3.

    Article  CAS  PubMed  Google Scholar 

  18. Steinbeck JA, Koch P, Derouiche A, Brustle O. Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. Cell Mol Life Sci. 2012;69:461–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113:1701–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. 2002;69:908–17.

    Article  CAS  PubMed  Google Scholar 

  21. Lee G, Chambers SM, Tomishima MJ, Studer L. Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc. 2010;5:688–701.

    Article  CAS  PubMed  Google Scholar 

  22. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11:268–77.

    Article  CAS  PubMed  Google Scholar 

  23. McLaren A. Ethical and social considerations of stem cell research. Nature. 2001;414:129–31.

    Article  CAS  PubMed  Google Scholar 

  24. Micci MA, Kahrig KM, Simmons RS, Sarna SK, Espejo-Navarro MR, Pasricha PJ. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology. 2005;129:1817–24.

    Article  CAS  PubMed  Google Scholar 

  25. Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci. 1995;18:159–92.

    Article  CAS  PubMed  Google Scholar 

  26. Kulkarni S, Zou B, Hanson J, Micci MA, Tiwari G, Becker L, et al. Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype. Am J Physiol Gastrointest Liver Physiol. 2011;301:G644–55. This article highlights the role that local environment derived factors can play in the differentiation of neural stem cells. The study primarily demonstrates that stem cells obtained from the central nervous system can acquire an enteric nervous phenotype in the presence of gut-derived factors.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, et al. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology. 2009;137:2063–73. e4.

    Article  CAS  PubMed  Google Scholar 

  28. Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007;56:489–96.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gilmont RR, Raghavan S, Somara S, Khalil B. Bioengineering of physiologically functional intrinsically innervated human internal anal sphincter constructs. Tissue Eng Part A 2013.

  30. Azan G, Low WC, Wendelschafer-Crabb G, Ikramuddin S, Kennedy WR. Evidence for neural progenitor cells in the human adult enteric nervous system. Cell Tissue Res. 2011;344:217–25.

    Article  PubMed  Google Scholar 

  31. Raghavan S, Gilmont RR, Bitar KN. Neuroglial differentiation of adult enteric neuronal progenitor cells as a function of extracellular matrix composition. Biomaterials. 2013;34:6649–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009;136:2214–25. e1-3.

    Article  CAS  PubMed  Google Scholar 

  33. Hagl CI, Heumuller-Klug S, Wink E, Wessel L, Schafer KH. The human gastrointestinal tract, a potential autologous neural stem cell source. PLoS One. 2013;8:e72948. The authors systematically demonstrate that neural stem cells derived from the human appendix have the same development and differentiation potential as neural stem cells derived from elsewhere in the intestine. This establishes the human appendix as a potential autologous neural stem cell source that can be accessed through routinely performed minimally invasive surgeries.

  34. Heanue TA, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells. 2011;29:128–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Suarez-Rodriguez R, Belkind-Gerson J. Cultured nestin-positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells. 2004;22:1373–85.

    Article  PubMed  Google Scholar 

  36. Becker L, Kulkarni S, Tiwari G, Micci MA, Pasricha PJ. Divergent fate and origin of neurosphere-like bodies from different layers of the gut. Am J Physiol Gastrointest Liver Physiol. 2012;302:G958–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kim J, Lo L, Dormand E, Anderson DJ. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 2003;38:17–31.

    Article  CAS  PubMed  Google Scholar 

  38. Tomellini E, Lagadec C, Polakowska R, Le Bourhis X. Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 2014.

  39. Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest. 2011;121:3412–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kulkarni S, Becker L, Pasricha PJ. Stem cell transplantation in neurodegenerative disorders of the gastrointestinal tract: future or fiction? Gut. 2012;61:613–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35:657–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lindley RM, Hawcutt DB, Connell MG, Edgar DH, Kenny SE. Properties of secondary and tertiary human enteric nervous system neurospheres. J Pediatr Surg. 2009;44:1249–55. discussion 1255–6.

    Article  PubMed  Google Scholar 

  43. Lindley RM, Hawcutt DB, Connell MG, Almond SL, Vannucchi MG, Faussone-Pellegrini MS, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology. 2008;135:205–16. e6.

    Article  PubMed  Google Scholar 

  44. Hetz S, Acikgoez A, Voss U, Nieber K, Holland H, Hegewald C, et al. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study. PLoS One. 2014;9:e93605.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dettmann HM, Zhang Y, Wronna N, Kraushaar U, Guenther E, Mohr R, et al. Isolation, expansion and transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One. 2014;9:e97792.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Hotta R, Stamp LA, Foong JP, McConnell SN, Bergner AJ, Anderson RB, et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest. 2013;123:1182–91. This study demonstrates transplant efficacy in post-natal bowel, where the microenvironment is markedly different from embryonic bowel.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Raghavan S, Miyasaka EA, Gilmont RR, Somara S, Teitelbaum DH, Bitar KN. Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells. Surgery. 2014;155:668–74.

    Article  PubMed  Google Scholar 

  48. Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development. 2003;130:6387–400.

    Article  CAS  PubMed  Google Scholar 

  49. Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron. 2002;35:643–56.

    Article  CAS  PubMed  Google Scholar 

  50. Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology. 2014;146:1614–24.

    Article  PubMed  Google Scholar 

  51. Peters RJ, Osinski MA, Hongo JA, Bennett GL, Okragly AJ, Haak-Frendscho M, et al. GDNF is abundant in the adult rat gut. J Auton Nerv Syst. 1998;70:115–22.

    Article  CAS  PubMed  Google Scholar 

  52. Escrig C, Bishop AE, Inagaki H, Moscoso G, Takahashi K, Varndell IM, et al. Localisation of endothelin like immunoreactivity in adult and developing human gut. Gut. 1992;33:212–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kondyli M, Varakis J, Assimakopoulou M. Expression of p75NTR and Trk neurotrophin receptors in the enteric nervous system of human adults. Anat Sci Int. 2005;80:223–8.

    Article  CAS  PubMed  Google Scholar 

  54. Hagl CI, Rauch U, Klotz M, Heumuller S, Grundmann D, Ehnert S, et al. The microenvironment in the Hirschsprung’s disease gut supports myenteric plexus growth. Int J Colorectal Dis. 2012;27:817–29. The authors demonstrate that microenvironmental factors in the aganglionic gut of Hirschsprung’s disease patients are adequate to support growth and differentiation of neural stem cells. Levels of the soluble neurotrophic factor GDNF were demonstrated to be sufficient to support myenteric plexus re-development.

    Article  PubMed  Google Scholar 

  55. Dong YL, Liu W, Gao YM, Wu RD, Zhang YH, Wang HF, et al. Neural stem cell transplantation rescues rectum function in the aganglionic rat. Transplant Proc. 2008;40:3646–52.

    Article  CAS  PubMed  Google Scholar 

  56. Raghavan S, Bitar KN. The influence of extracellular matrix composition on the differentiation of neuronal subtypes in tissue engineered innervated intestinal smooth muscle sheets. Biomaterials 2014. The authors demonstrate that extracellular matrix components can direct the differentiation of adult enteric neural stem cells in vitro. This could have implications when enriched specific neuronal phenotypes may be required to remedy specific gastrointestinal disorders.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors have no competing interests to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil N. Bitar.

Additional information

This article is part of the Topical Collection on Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitar, K.N., Raghavan, S. Stem Cell Therapy for GI Neuromuscular Disorders. Curr Gastroenterol Rep 16, 419 (2014). https://doi.org/10.1007/s11894-014-0419-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-014-0419-8

Keywords

Navigation