Skip to main content

Advertisement

Log in

Medical Update and Potential Advances in the Treatment of Pediatric Intestinal Failure

  • Pediatric Gastroenterology (SR Orenstein, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Short bowel syndrome (SBS) and intestinal failure are chronic malabsorption disorders with considerable nutritional and growth consequences in children. Intestinal failure occurs when the functional gastrointestinal mass is reduced even if there is normal anatomical gastrointestinal length. A number of management strategies are often utilized to achieve successful intestinal rehabilitation and maintain adequate nutrition to avoid intestinal transplant. These strategies include minimizing the effect of parenteral associated liver disease, limiting catheter complications, and treating bacterial overgrowth in the remaining small intestine. In addition, there continues to be significant research interest in enhancing intestinal adaptation with targeted therapies. The purpose of this review is to discuss current perspectives and to highlight recent medical advances in novel investigational therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. O'Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4:6–10.

    Article  PubMed  Google Scholar 

  2. Fleming C, Remington M. Intestinal failure. In: Hill G, editor. Nutrition and the surgical patient. Edinburgh: Churchill Livingston; 1981. p. 219–35.

    Google Scholar 

  3. Ziegler TR, Cole CR. Small bowel bacterial overgrowth in adults: a potential contributor to intestinal failure. Curr Gastroenterol Rep. 2007;9:463–7.

    Article  PubMed  Google Scholar 

  4. Goulet O, Ruemmele F, Lacaille F, Colomb V. Irreversible intestinal failure. J Pediatr Gastroenterol Nutr. 2004;38:250–69.

    Article  PubMed  Google Scholar 

  5. Salvia G, Guarino A, Terrin G, Cascioli C, Paludetto R, Indrio F, Lega L, Fanaro S, Stronati M, Corvaglia L, Tagliabue P, De Curtis M. Neonatal onset intestinal failure: an Italian multicenter study. J Pediatr. 2008;153:674.e2–6.e2.

    Article  Google Scholar 

  6. Wales PW, de Silva N, Kim J, Lecce L, To T, Moore A. Neonatal short bowel syndrome: population-based estimates of incidence and mortality rates. J Pediatr Surg. 2004;39:690–5.

    Article  PubMed  Google Scholar 

  7. Koffeman GI, van Gemert WG, George EK, Veenendaal RA. Classification, epidemiology and aetiology. Best Pract Res Clin Gastroenterol. 2003;17:879–93.

    Article  PubMed  Google Scholar 

  8. Bakker H, Bozzetti F, Staun M, Leon-Sanz M, Hebuterne X, Pertkiewicz M, Shaffer J, Thul P. Home parenteral nutrition in adults: a European multicentre survey in 1997. ESPEN-Home Artificial Nutrition Working Group. Clin Nutr. 1999;18:135–40.

    Article  PubMed  CAS  Google Scholar 

  9. Guarino A, De Marco G. Natural history of intestinal failure, investigated through a national network-based approach. J Pediatr Gastroenterol Nutr. 2003;37:136–41.

    Article  PubMed  Google Scholar 

  10. Cole CR, Hansen NI, Higgins RD, Ziegler TR, Stoll BJ, for the Eunice Kennedy Shriver NNRN. Very low birth weight preterm infants with surgical short bowel syndrome: incidence, morbidity and mortality, and growth outcomes at 18 to 22 months. Pediatrics. 2008;122:e573–82.

    Article  PubMed  Google Scholar 

  11. Casey L, Lee KH, Rosychuk R, Turner J, Huynh HQ. 10-year review of pediatric intestinal failure: clinical factors associated with outcome. Nutr Clin Pract. 2008;23:436–42.

    Article  PubMed  Google Scholar 

  12. Pakarinen MP, Koivusalo AI, Rintala RJ. Outcomes of intestinal failure—a comparison between children with short bowel and dysmotile intestine. J Pediatr Surg. 2009;44:2139–44.

    Article  PubMed  Google Scholar 

  13. Feldman EJ, Dowling RH, McNaughton J, et al. Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology. 1976;70(5 PT1):712–9.

    PubMed  CAS  Google Scholar 

  14. Tyson J, Kennedy K. Minimal enteral feeding for promoting feeding tolerance and preventing morbidity in parenterally fed infants. Cochrane Database Syst Rev. 1997;4:CD000504.

    Google Scholar 

  15. Ekingen G, Ceran C, Guvenc BH, Tuzlaci A, Kahraman H. Early enteral feeding in newborn surgical patients. Nutrition. 2005;21:142–6.

    Article  PubMed  Google Scholar 

  16. Andorsky DJ, Lund DP, Lillehel CW, Jaksic T, Dicanzio J, Richardson D, Collier SB, Lo C, Duggan C. Nutritional and other post- operative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr. 2001;139:27–33.

    Article  PubMed  CAS  Google Scholar 

  17. Playford RJ, Macdonald CE, Johnson WS. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr. 2000;72:5–14.

    PubMed  CAS  Google Scholar 

  18. Crenn P, Morin MC, Joly F, Penven S, Thuillier F, Messing B. Net digestive absorption and adaptativehyperphagia in adult short bowel patients. Gut. 2004;53:1279–86.

    Article  PubMed  CAS  Google Scholar 

  19. Lennard-Jones JE. Oral rehydration solutions in short bowel syndrome. Clin Ther. 1990;12(supp a):129–37.

    PubMed  Google Scholar 

  20. Bhatia J, Gates A, Parish A. Medical management of short gut syndrome. J Perinatol. 2010;30:S2–5.

    Article  PubMed  Google Scholar 

  21. Jackson CS, Buchman AL. The nutrional management of short bowel syndrome. Nutr Clin Care. 2004;7(3):114–21.

    PubMed  Google Scholar 

  22. Mekhjian HS, Philips SF, Hofman AF. Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J Clin Invest. 1977;50:1569–77.

    Article  Google Scholar 

  23. Newcomer AD. Surface digestion of carbohydrates. Mayo Clin Proc. 1973;48:620–3.

    PubMed  CAS  Google Scholar 

  24. Bines J, Francis D, Hill D. Reducing parenteral requirement in children with short bowel syndrome: impact of an amino acid-based complete infant formula. J Pediatr Gastroenterol Nutr. 1998;26(2):123–8.

    Article  PubMed  CAS  Google Scholar 

  25. Vanderhoof JA, Young RJ. Hydrolyzed versus nonhydrolyzed protein diet in short bowel syndrome in children. J Pediatr Gastroenterol Nutr. 2004;38:107.

    PubMed  Google Scholar 

  26. Parker P, Stroop S, Green H. A controlled comparison of continuous versus intermittent feedings in the treatment of infants with intestinal disease. J Pediatr. 1981;99:360–4.

    Article  PubMed  CAS  Google Scholar 

  27. Olieman JF, Penning C, Ijsselstijn H, et al. Enteral nutrition in children with short bowel syndrome: current evidence and recommendations for the clinician. J Am Diet Assoc. 2010;110:420–6.

    Article  PubMed  Google Scholar 

  28. Jaksik T, Shew SB, Keshen TH, et al. Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg. 2001;36(1):63–7.

    Article  Google Scholar 

  29. Woolf GM, Miller C, Kurian R, et al. Nutrional absorption in short bowel syndrome. Evaluation of fluid, calorie, and divalent cation requirements. Dig Dis Sci. 1987;32(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  30. Yang CJ, Duro D, Zurakowski D, et al. High prevalence of multiple micronutrient deficiencies in children with intestinal failure: a longitudinal study. J Pediatr. 2011;159:39–44.

    Article  PubMed  Google Scholar 

  31. Oversen L, Chu R, Howard L. The influence of dietary fat on jejunostomy output in patients with severe short bowel syndrome. Am J Clin Nutr. 1983;38(2):270–7.

    Google Scholar 

  32. Holleland G, Schneede J, Ueland PM, et al. Cobalamin deficiency in general practice. Assessment of the diagnostic utility and cost–benefit analysis of methylmalonic acid determination in relation to current diagnostic strategies. Clin Chem. 199;45(2):189–198.

  33. Green R. Indicators for assessing folate and vitamin B-12 status and for monitoring the efficacy of intervention strategies. Am J Clin Nutr. 2011 Jul 6. [Epub ahead of print]PMID: 21733877.

  34. Crenn P, et al. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000;119(6):1496–505.

    Article  PubMed  CAS  Google Scholar 

  35. Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 2008;27(3):328–39.

    Article  PubMed  CAS  Google Scholar 

  36. Hull MA, Jones BA, Zurakowski D, Raphael B, Lo C, Jaksic T, Duggan C. Low serum citrulline concentration correlates with catheter-related bloodstream infections in children with intestinal failure. JPEN J Parenter Enter Nutr. 2011;35(2):181–7.

    Article  CAS  Google Scholar 

  37. Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O'Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60(7):902–14.

    Article  PubMed  CAS  Google Scholar 

  38. Rager R, Finegold MJ. Cholestasis in immature newborn infants: is prenteral alimentation responsible? J Pediatr. 1975;86:264–89.

    Article  PubMed  CAS  Google Scholar 

  39. Kelly DA. Liver complications of pediatric prenteral nutrition—epidemiology. Nutrition. 1998;14:153–7.

    Article  PubMed  CAS  Google Scholar 

  40. Carter BA, Shulman RJ. Mechanisms of disease: update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2007;4(5):277–87.

    Article  PubMed  CAS  Google Scholar 

  41. Gunsar C, et al. The biochemical and histological effects of ursodeoxycholic acid and metronidazole on total parenteral nutrition-associated hepatic dysfunction: an experimental study. Hepatogastroenterology. 2002;49:497–500.

    PubMed  CAS  Google Scholar 

  42. Lindor KD, Burnes J. Ursodeoxycholic acid for the treatment of home parenteral nutrition-associated cholestasis: a case report. Gastroenterology. 1991;101:250–3.

    PubMed  CAS  Google Scholar 

  43. Tsai S, et al. Failure of cholecystokinin-octapeptideto prevent TPN-associated gallstone disease. J Pediatr Surg. 2005;40:263–7.

    Article  PubMed  Google Scholar 

  44. Heubi JE, et al. Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J Pediatr. 2002;141:237–42.

    Article  PubMed  CAS  Google Scholar 

  45. Cavicchi M, et al. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med. 2000;132:525–32.

    PubMed  CAS  Google Scholar 

  46. Colomb V, et al. Long-term parenteral nutrition in children: liver and gallbladder disease. Transplant Proc. 1992;24:1054–5.

    PubMed  CAS  Google Scholar 

  47. Cober MP, Teitelbaum DH. Prevention of parenteral nutrition associated liver disease: lipid minimization. Curr Opin Organ Transplant. 2010;15:330–3.

    Article  PubMed  Google Scholar 

  48. Clayton PT, et al. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology. 1993;105:1806–13.

    PubMed  CAS  Google Scholar 

  49. Carter BA, et al. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor, FXR. Pediatr Res. 2007.

  50. Gura KM, et al. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics. 2006;118:e197–201.

    Article  PubMed  Google Scholar 

  51. • de Meijer VE, et al. Fish oil lipid emulsions prevent and reverse parenteral nutrition-associated liver disease: the Boston experience. JPEN J Parenter Enter Nutr. 2009;33:541–7. The important consideration that is highlighted in this manuscript is the recent advances in lipid management. In particular, the source of lipid: soy-based vs. fish-based oil as a strategy to mitigate parenteral nutrition associated liver disease.

    Article  Google Scholar 

  52. Lee S, et al. Current clinical applications of omega–6 and omega-3 fatty acids. Nutr Clin Pract. 2006;21:323–41.

    Article  PubMed  Google Scholar 

  53. Soden JS, et al. Failure of resolution of portal fibrosis during omega-3 fatty acid emulsion therapy in two patients with irreversible intestinal failure. J Pediatr. 2010;156(2):327–31.

    Article  PubMed  CAS  Google Scholar 

  54. Gura KM, et al. Safety and efficacy of a fish oil-based fat emulsion in the treatment of parenteral nutrition-associated liver disease. Pediatrics. 2008;121:e678–86.

    Article  PubMed  Google Scholar 

  55. Spaeth G, et al. Fibre is an essential ingredient in enteral diets to limit bacterial translocation in rats. Eur J Surg. 1995;161:513–8.

    PubMed  CAS  Google Scholar 

  56. Goulet O, Ruemmele F. Causes and management of intestinal failure in children. Gastroenterology. 2006;130 suppl 1:s16–28.

    Article  PubMed  CAS  Google Scholar 

  57. Ohishi A, et al. Bifidobacterium septicemia associated with postoperative probiotic therapy in a neonate with omphalocoele. J Pediatr. 2010;156(4):679–81.

    Article  PubMed  Google Scholar 

  58. Kurkchubasche AG, et al. Catheter sepsis in short bowel syndrome. Arch Surg. 1992;127:21–4.

    Article  PubMed  CAS  Google Scholar 

  59. Wolf A, Pohlandt F. Bacterial infection: the main cause of acute cholestasis in newborn infants receiving short-term parenteral nutrition. J Pediatr Gastroenterol Nutr. 1989;8:297–303.

    Article  PubMed  CAS  Google Scholar 

  60. Lichtman SN, et al. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology. 1991;13:766–72.

    Article  PubMed  CAS  Google Scholar 

  61. Ghose R, et al. Endotoxin leads to rapid subcellular re-localization pf hepatic RXRalpha: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept. 2004;2:4.

    Article  PubMed  Google Scholar 

  62. Onland W, et al. Ethanol-lock technique for persistent bacteremia of long-term intravascular devices in pediatric patients. Arch Pediatr Adolesc Med. 2006;160:1049–53.

    Article  PubMed  Google Scholar 

  63. McHugh GJ, et al. Polyurethane central venous catheters, hydrochloric acid, and 70 % ethanol: a safety evaluation. Anaesth Intensive Care. 1997;25(4):350–3.

    PubMed  CAS  Google Scholar 

  64. • Mouw E, et al. Use of an ethanol lock to prevent catheter-related infections in children with short bowel syndrome. J Pediatr Surg. 2008;43(6):1025–9. In this article, the authors have discussed the important role that ethanol locks can provide in maintaining central line access and avoiding infections in a highly at-risk population.

    Article  PubMed  Google Scholar 

  65. Byrne TA, Wilmore DW, Iyer K, et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: a prospective, randomized, placebo-controlled, double-blind clinical trial. Ann Surg. 2005;242(5):655–61.

    Article  PubMed  Google Scholar 

  66. • Goulet O, Dabbas-Tyan M, Talbotec C, Kapel N, Rosilio M, et al. Effect of recombinant human growth hormone on intestinal absorption and body composition in children with short bowel syndrome. J Parenter Enter Nutr. 2010;5(34):513–20. In this manuscript, the authors highlight the potential future role that therapies directed at enhancing growth promotion may have at further enhancing intestinal adaptation in children with intestinal failure. The therapies highlighted continue to be under investigation in the pediatric population with no long-term studies to assess the benefit risk of these agents.

    Article  Google Scholar 

  67. Jeppesen PB, Hartmann B, Thulesen J, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120(4):806–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Dr. B. Carter has been a board member for Baxter Healthcare and Coram Home Perinatal Nutrition, and has received honoraria from Nutricia and Baxter Healthcare, payment from manuscript preparation from Coram, royalties from Up To Date, and payment for development of educational presentations and travel and accomodation reimbursement from Baxter Healthcare, Coram, Academy of Healthcare Learning, and Nutricia; Dr. C. Cole has received grant support from the National Institutes of Health and payment for the development of educational presentations from NASPGHAN Foundation; Dr. N. Youssef has been an employee with stock options for NPS Pharmaceuticals; Dr. A. Mezoff reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader N. Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssef, N.N., Mezoff, A.G., Carter, B.A. et al. Medical Update and Potential Advances in the Treatment of Pediatric Intestinal Failure. Curr Gastroenterol Rep 14, 243–252 (2012). https://doi.org/10.1007/s11894-012-0262-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-012-0262-8

Keywords

Navigation