Skip to main content

Advertisement

Log in

Can the Intestinal Dysmotility of Critical Illness be Differentiated from Postoperative Ileus?

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Gastrointestinal dysmotility is commonly noted in the intensive care unit and postoperative settings. Characterized by delayed passage of stool and flatus, nausea, vomiting, and abdominal distention, the condition is associated with nutritional deficiencies, risk of aspiration, and considerable allocation of health care resources. Knowledge of gastrointestinal function in health and illness continues to expand. While the factors that precipitate ileus differ between postoperative and critically ill patients, the two clinical scenarios seem to have similar mechanisms and share many of the same pathophysiologic patterns. By reviewing and comparing the literature on the respective mechanisms and contributing factors generated in these separate clinical settings, a common more comprehensive management strategy may be derived with the potential for newer innovative therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. ••Martindale RG, McClave SA, Vanek VW, et al. American College of Critical Care Medicine; A.S.P.E.N. Board of Directors. 2009 Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med. 2009;37(5):1757–61. This report provides a comprehensive set of guidelines for the routine daily practice of critical care nutrition at the bedside.

    Article  PubMed  Google Scholar 

  2. ••Ukleja A. Altered GI motility in critically ill patients: current understanding of pathophysiology, clinical impact, and diagnostic approach. Nutr Clin Pract. 2010;25(1):16–25. This review gives a very comprehensive discussion of the pathophysiologic disorders contributing to intestinal dysmotility in the ICU.

    Article  PubMed  Google Scholar 

  3. Asgeirsson T, El-Badawi KI, Mahmood A, et al. Post-operative ileus: it costs more than you think. J Am Coll Surg 2010.

  4. Heyland DK, Cook DJ, Guyatt GH. Enteral nutrition in the critically ill patient: A critical review of the evidence. Intensive Care Med. 1993;19:435–42.

    Article  PubMed  CAS  Google Scholar 

  5. Iyer S, Saunders WB. Impact of post-operative ileus (POI) on hospital length of stay in colectomy surgery patients. Abstract presented at American College of Gastroenterology Annual Scientific Meeting, Philadelphia, 2007

  6. Kao CH, ChangLai SP, Chieng PU, et al. Gastric emptying in head-injured patients. Am J Gastroenterol. 1998;93:1108.

    Article  PubMed  CAS  Google Scholar 

  7. Iyer S, Saunders WB, Stemkowski S. Economic burden of post-operative ileus associated with colectomy in the United States. J Manag Care Pharm. 2009;15:485–94.

    PubMed  Google Scholar 

  8. ••Senagore AJ. Pathogenesis and clinical and economic consequences of post-operative ileus. Am J Health Syst Pharm. 2007;64:S3–7. This paper is an excellent report on the economic implications of post-op ileus.

    Article  PubMed  Google Scholar 

  9. Post-operative Ileus Management Council. Available at http://www.clinicalwebcasts.com/PIMC.htm. Accessed December 12, 2010.

  10. Maes BD, Ghoos YF, Geypens BJ, et al. Combined carbon-13-glycine/carbon-14-octanoic acid breath test to monitor gastric emptying rates of liquids and solids. J Nucl Med. 1994;35:824–31.

    PubMed  CAS  Google Scholar 

  11. Chapman M, Fraser R, Vozzo R, et al. Antro-pyloro-duodenal motor responses to gastric and duodenal nutrient in critically ill patients. Gut. 2005;54(10):1384–90.

    Article  PubMed  CAS  Google Scholar 

  12. Chapman MJ, Fraser RJ, Bryant LK, et al. Gastric emptying and the organization of antro-duodenal pressures in the critically ill. Neurogastroenterol Motil. 2008;20(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  13. Madl C, Druml W. Gastrointestinal disorders of the critically ill. Systemic consequences of ileus. Best Pract Res Clin Gastroenterol. 2003;17(3):445–56. Review.

    Article  PubMed  Google Scholar 

  14. Barclay ML, Fraser R, Tournadre J-P, et al. Small intestinal and gastric motility in patients in the intensive care unit following elective abdominal aortic aneurysm repair. Gastroenterology. 1997;112:A694.

    Google Scholar 

  15. Dive A, Moulart M, Jonard P, et al. Gastroduodenal motility in mechanically ventilated critically ill patients: A manometric study. Crit Care Med. 1994;22:441–7.

    Article  PubMed  CAS  Google Scholar 

  16. Burnstock G. The journey to establish purinergic signalling in the gut. Neurogastroenterol Motil. 2008;20(Suppl1):8–19.

    Article  PubMed  CAS  Google Scholar 

  17. Wang L, Yao H, Yang Y-E, et al. Enhanced purinergic pathway occurs in post-operative ileus: reversal by orphanin. Gastroenterology. 2008;126:75.

    Google Scholar 

  18. De Winter BY, Bredenoord AJ, Van Nassauw L, et al. Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: role of CGRP and TRPV1 receptors. Eur J Pharmacol. 2009;615:177–84.

    Article  PubMed  Google Scholar 

  19. Akbarli H, Hawkins EG, Ross GR, Kang M. Ion channel remodeling in gastrointestinal inflammation. Neurogastroenterol Motil. 2010;22(10):1045–55.

    Article  Google Scholar 

  20. Holzer P, Holzer-Petsche U. Tachykinins in the gut. Part 1. Expression, release and motor function. Pharmacol Ther. 1997;73:173–217.

    Article  PubMed  CAS  Google Scholar 

  21. Toulouse M, Fioramonti J, Maggi C, Bueno L. Role of NK2 receptors in gastric barosensitivity and in experimental ileus in rats. Neurogastroent Motil. 2001;13:45–53.

    Article  CAS  Google Scholar 

  22. Cullen JJ, Caropreso DK, Hemann LL, et al. Pathophysiology of adynamic ileus. Dig Dis Sci. 1997;42:731–7.

    Article  PubMed  CAS  Google Scholar 

  23. Yanagida H, Sanders KM, Ward SM. Inactivation of inducible nitric oxide synthase protects intestinal pacemakers cells from post-operative damage. J Physiol. 2007;582:755–65.

    Article  PubMed  CAS  Google Scholar 

  24. ••Wirthlin DJ, Cullen JJ, Spates ST, et al. Gastrointestinal transit during endotoxemia: the role of nitric oxide. J Surg Res. 1996;60:307–11. This classic article reviews the cellular mechanisms involved with dysmotility in sepsis.

    Article  PubMed  CAS  Google Scholar 

  25. Turler A, Kalff JC, Moore BA, et al. Leukocyte-derived inducible nitric oxide synthase mediates murine post-operative ileus. Ann Surg. 2006;244:220–9.

    Article  PubMed  Google Scholar 

  26. Wittmeyer V, Merrot T, Mazet B. Tonic inhibition of human small intestinal motility by nitric oxide in children but not in adults. Neurogastroenterol Motil. 2010;22(10):1078–e282.

    Article  PubMed  CAS  Google Scholar 

  27. Camilleri M, Vassallo M. Small intestinal motility and transit in disease. Baillie`re’s. Clin Gastroenterol. 1991;5:431–51.

    CAS  Google Scholar 

  28. ••Waldhausen JH, Shaffrey ME, Skenderis BS, et al. Gastrointestinal myoelectric and clinical patterns of recovery after laparotomy. Ann Surg. 1990;211:777–84. This classic paper describes the myoelectric changes that occur in the postoperative setting.

    Article  PubMed  CAS  Google Scholar 

  29. Behm B, Stollman N. Post-operative ileus: etiologies and interventions. Clin Gastroenterol Hepatol. 2003;1:71–80.

    Article  PubMed  Google Scholar 

  30. Mattei P, Rombeau JL. Review of the pathophysiology and management of post-operative ileus. World J Surg. 2006;30(8):1382–91.

    Article  PubMed  Google Scholar 

  31. Fukuda H, Tsuchida D, Koda K, et al. Inhibition of sympathetic pathways restores post-operative ileus in the upper and lower gastrointestinal tract. J Gastroenterol Hepatol. 2007;22:1293–9.

    Article  PubMed  Google Scholar 

  32. Bueno L, Ferre JP, Ruckebusch Y. Effects of anesthesia and procedures on intestinal myoelectric activity in rats. Am J Dig Dis. 1978;23:690–5.

    Article  PubMed  CAS  Google Scholar 

  33. Coskun T, Bozkurt A, Alican I, et al. Pathways mediating CRF-induced inhibition of gastric emptying in rats. Regul Pept. 1997;69:113–20.

    Article  PubMed  CAS  Google Scholar 

  34. Johnston KW. Multicenter prospective study of nonruptured abdominal aortic aneurysm. Part II. Variables predicting morbidity and mortality. J Vasc Surg. 1989;9:437–47.

    Article  PubMed  CAS  Google Scholar 

  35. Kariv Y, Wang W, Senagore AJ, et al. Multivariable analysis of factors associated with hospital readmission after intestinal surgery. Am J Surg. 2006;191:364–71.

    Article  PubMed  Google Scholar 

  36. Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89:622–32.

    Article  PubMed  CAS  Google Scholar 

  37. Prasad M, Matthews JB. Deflating post-operative ileus. Gastroenterology. 1999;117(2):489–92.

    Article  PubMed  CAS  Google Scholar 

  38. Shires T, Williams J, Brown F. Acute change in extracellular ¯uids associated with major surgical procedures. Ann Surg. 1961;154:803–10.

    Article  PubMed  CAS  Google Scholar 

  39. Prien T, Backhaus N, Pelster F, et al. Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery. J Clin Anesth. 1990;2:317–23.

    Article  PubMed  CAS  Google Scholar 

  40. Lobo DN, Bostock KA, Neal KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised control trial. Lancet. 2002;359:1812–10.

    Article  PubMed  Google Scholar 

  41. Brandstrup B, Tønnesen H, Beier-Holgersen R, et al. Danish Study Group on Perioperative Fluid Therapy: Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.

    Article  PubMed  Google Scholar 

  42. WenKui Yu, Ning Li, JianFeng Gong, WeiQin Li, ShaoQiu Tang, Zhihui Tong, et al. Restricted peri-operative fluid administration adjusted by serum lactate level improved outcome after major elective surgery for gastrointestinal malignancy. Surgery. 2010;147(4):542–52.

    Article  PubMed  Google Scholar 

  43. Braga M, Vignali A, Gianotti L, et al. Laparoscopic versus open colorectal surgery: a randomized trial on short-term outcome. Ann Surg. 2002;236:759–66.

    Article  PubMed  Google Scholar 

  44. Schwarz NT, Kalff JC, Turler A, et al. Protanoid production via COX-2 as a causative mechanism of rodent post-operative ileus. Gastroenterology. 2001;121:1354–71.

    Article  PubMed  CAS  Google Scholar 

  45. Kalff JC, Carlos TM, Schraut WH, et al. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate post-operative ileus. Gastroenterology. 1999;117(2):378–87.

    Article  PubMed  CAS  Google Scholar 

  46. de Giorgio R, Barbara G. Evidence for mast cell involvement in human post-operative ileus: a novel link. Gut. 2008;57:5–7.

    Article  PubMed  Google Scholar 

  47. Boeckxstaens GE, de Jonge WJ. Neuroimmune mechanisms in post-operative ileus. Gut. 2009;58:1300–11.

    Article  PubMed  CAS  Google Scholar 

  48. Bauer AJ, Boeckxstaens GE. Mechanisms of post-operative ileus. Neurogastroenterol Motil. 2004;16:54–60.

    Article  PubMed  Google Scholar 

  49. Schwarz NT, Beer-Stolz D, Simmons RL, Bauer AJ. Pathogenesis of paralytic ileus: intestinal manipulation opens a transient pathway between the intestinal lumen and the leukocytic infiltrate of the jejunal muscularis. Ann Surg. 2002;235(1):31–40.

    Article  PubMed  Google Scholar 

  50. Kalff JC, Schraut WH, Simmons RL, Bauer AJ. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg. 1998;228:652–63.

    Article  PubMed  CAS  Google Scholar 

  51. Scirocco A, Matarrese P, Petitta C, et al. Exposure of Toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J Cell Phys. 2010;223(2):442–50.

    CAS  Google Scholar 

  52. Buchholz MB, Bauer AJ. Membrane TLR signaling mechanisms in the gastrointestinal tract during sepsis. Neurogastroenterol Motil. 2010;22(3):232–45.

    Article  PubMed  CAS  Google Scholar 

  53. Shimizu K, Ogura H, Asahara T, et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: a preliminary study. Neurogastroenterol Motil 2010 Dec 29. doi:10.1111/j.1365-2982.2010.01653.x. [Epub ahead of print].

  54. Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs. 2003;63:649–71.

    Article  PubMed  CAS  Google Scholar 

  55. DeHaven-Hudkins DL, DeHaven RN, Little PJ, Techner LM. The involvement of the mu-opioid receptor in gastrointestinal pathophysiology: therapeutic opportunities for antagonism at this receptor. Pharmacol Ther. 2007;117:162–87.

    Article  PubMed  Google Scholar 

  56. Holzer P. Opioid receptors in the gastrointestinal tract. Regul Pept. 2009;155:11–7.

    Article  PubMed  CAS  Google Scholar 

  57. Luckey A, Livingston E, Tache Y. Mechanisms and treatment of post-operative ileus. Arch Surg. 2003;138(2):206–14.

    Article  PubMed  Google Scholar 

  58. Ferraz AA, Cowles VE, Condon RE, et al. Nonopioid analgesics shorten the duration of post-operative ileus. Am Surg. 1995;61(12):1079–83.

    PubMed  CAS  Google Scholar 

  59. Greenwood-Van MB. Emerging drugs for post-operative ileus. Expert Opin Emerg Drugs. 2007;12:619–26.

    Article  Google Scholar 

  60. Goodman AJ, Le BB, Dolle RE. Mu opioid receptor antagonists: recent developments. ChemMedChem. 2007;2:1552–70.

    Article  PubMed  CAS  Google Scholar 

  61. Fraser RJL, Bryant L. Current and future therapeutic prokinetic therapy to improve enteral feed intolerance in the ICU patient. Nutr Clin Pract. 2010;25(1):26–31.

    Article  PubMed  Google Scholar 

  62. Landzinski J, Kiser TH, Fish DN, et al. Gastric motility function in critically ill patients tolerant vs intolerant to gastric nutrition. J Parenter Enteral Nutr. 2008;32(1):45–50.

    Article  Google Scholar 

  63. Loughlin J, Quinn S, Rivero E, et al. Tegaserod and the risk of cardiovascular ischemic events: an observational cohort study. J Cardiovas Pharmacol Ther. 2010;15(2):151–7.

    Article  Google Scholar 

  64. Ejskjaer N, Dimcevski G, Wo J, et al. Safety and Efficacy of ghrelin agonist TZP-101 in relieving symptoms in patients with diabetic gastroparesis: a randomized, placebo-controlled study. Neurogastroenterol Motil. 2010;22(10):1069–e281.

    Article  PubMed  CAS  Google Scholar 

  65. Park MI, Ferber I, Camilleri M, et al. Effect of atilmotin on gastrointestinal transit in healthy subjects: a randomized, placebo-controlled study. Neurogastroenterol Motil. 2006;18:28–36.

    Article  PubMed  Google Scholar 

  66. Yuan CS, Israel RJ. Methylnaltrexone, a novel peripheral opioid receptor antagonist for the treatment of opioid side effects. Expert Opin Investig Drugs. 2006;15:541–52.

    Article  PubMed  CAS  Google Scholar 

  67. Senagore Anthony J, Bauer Joel J, Du Wei, Techner Lee. Alvimopan accelerates gastrointestinal recovery after bowel resection regardless of age, gender, race, or concomitant medication use. Surgery. 2007;142(4):478–86.

    Article  PubMed  CAS  Google Scholar 

  68. Delaney CP, Weese JL, Hyman NH, et al. Phase III trial of alvimopan, a novel, peripherally acting, mu opioid antagonist, for post-operative ileus after major abdominal surgery. Dis Colon Rectum. 2005;48:1114–25.

    Article  PubMed  Google Scholar 

  69. Wolff BG, Michelassi F, Gerkin TM, et al. Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and post-operative ileus. Ann Surg. 2004;240:728–34.

    PubMed  Google Scholar 

  70. Johanson JF, Gargano MA, Holland PC. Phase III efficacy and safety of RU-0211, a novel chloride channel activator, for the treatment of constipation. Gastroenterology. 2003;124:48.

    Article  Google Scholar 

  71. Madsen PV, Lykkegaard-Nielsen M, Nielsen OV. Dis Colon Rectum. 1983;26:159–60.

    Article  PubMed  CAS  Google Scholar 

  72. Miedema BW, Johnson JO. Methods for decreasing post-operative gut dysmotility. Lancet Oncol. 2003;4(6):365–72.

    Article  PubMed  Google Scholar 

  73. De Backer O, Elinch E, Priem E, et al. Peroxisome proliferator-activated receptor gamma activation alleviates post-operative ileus in mice by inhibition of Egr-1 expression and its downstream target genes. J Pharmacol Exp Ther. 2009;331(2):496–503.

    Article  PubMed  Google Scholar 

  74. Kozar RA, Anderson KD. Postinjury Enteral Tolerance Is Reliably Achieved by a Standardized Protocol. J Surg Res. 2002;104(1):70–5.

    Article  PubMed  Google Scholar 

  75. Heyland D, Cahill NE, Wang M, et al. Benefit of supplemental parenteral nutrition in the critically ill patient? Results of a multicenter observational study. Crit Care. 2010;14(Supp 1):P557.

    Article  Google Scholar 

  76. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001 Dec;29(12):2264–70.

    Article  PubMed  CAS  Google Scholar 

  77. Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus “nil by mouth” after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ. 2001;323(7316):773–6.

    Article  PubMed  CAS  Google Scholar 

  78. Heyland DK, Dhaliwal R, Drover JW, et al. Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355–73.

    Article  PubMed  Google Scholar 

  79. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg. 2009 Mar;13(3):569–75.

    Article  PubMed  Google Scholar 

  80. Doig GS, Heighes PT, Simpson F, et al. Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials. Intensive Care Med. 2009 Dec;35(12):2018–27.

    Article  PubMed  CAS  Google Scholar 

  81. Osland EJ, Memon MA. Early postoperative feeding in resectional gastrointestinal surgical cancer patients. World J Gastrointest Oncol. 2010;2(4):187–91.

    Article  PubMed  Google Scholar 

  82. Doig GS, Heighes PT, Simpson F, Sweetman EA. Early enteral nutrition reduces mortality in trauma patients requiring intensive care: A meta-analysis of randomised controlled trials. Injury. 2010 Jul 7. [Epub ahead of print]

Download references

Disclosure

K. A. Caddell: None; R. Martindale: None; S.A. McClave: Consultancy for Kimberly Clark and Covidien Pharmaceuticals, and honoraria from Nettle Pharmaceuticals and Abbott Pharmaceuticals; K. Miller: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Martindale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caddell, K.A., Martindale, R., McClave, S.A. et al. Can the Intestinal Dysmotility of Critical Illness be Differentiated from Postoperative Ileus?. Curr Gastroenterol Rep 13, 358–367 (2011). https://doi.org/10.1007/s11894-011-0206-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-011-0206-8

Keywords

Navigation