Skip to main content

Advertisement

Log in

Early Pregnancy Biochemical Predictors of Gestational Diabetes Mellitus

  • Diabetes and Pregnancy (MF Hivert, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Universal oral glucose tolerance-based screening is employed to identify pregnant women with gestational diabetes mellitus (GDM), as treatment of this condition decreases the risk of associated complications. A simple and accurate blood test which identifies women at low or high risk for GDM in the first trimester would have the potential to decrease costs and improve outcomes through prevention or treatment. This review summarizes published data on early pregnancy biomarkers which have been tested as predictors of GDM.

Recent Findings

A large number of first-trimester biochemical predictors of GDM have been reported, mostly in small case-control studies. These include glycemic markers (fasting glucose, post-load glucose, hemoglobin A1C), inflammatory markers (C-reactive protein, tumor necrosis factor-alpha), insulin resistance markers (fasting insulin, sex hormone-binding globulin), adipocyte-derived markers (adiponectin, leptin), placenta-derived markers (follistatin-like-3, placental growth factor, placental exosomes), and others (e.g., glycosylated fibronectin, soluble (pro)renin receptor, alanine aminotransferase, ferritin). A few large studies suggest that first-trimester fasting glucose or hemoglobin A1C may be useful for identifying women who would benefit from early GDM treatment.

Summary

To translate the findings from observational studies of first-trimester biomarkers for GDM to clinical practice, trials or cost-effectiveness analyses of screening and treatment strategies based on these novel biomarkers are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Standards of medical care in diabetes—2016: summary of revisions. Diabetes Care. 2016;39 Suppl 1:S4-5. doi:10.2337/dc16-S003.

  2. Committee on Practice B-O. Practice Bulletin No. 137: Gestational diabetes mellitus. Obstet Gynecol. 2013;122(2 Pt 1):406–16. doi:10.1097/01.AOG.0000433006.09219.f1.

    Google Scholar 

  3. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352(24):2477–86. doi:10.1056/NEJMoa042973.

    Article  CAS  PubMed  Google Scholar 

  4. Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med. 2009;361(14):1339–48. doi:10.1056/NEJMoa0902430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McIntyre HD, Metzger BE, Coustan DR, Dyer AR, Hadden DR, Hod M, et al. Counterpoint: establishing consensus in the diagnosis of GDM following the HAPO study. Curr Diab Rep. 2014;14(6):497. doi:10.1007/s11892-014-0497-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Long H, Cundy T. Establishing consensus in the diagnosis of gestational diabetes following HAPO: where do we stand? Curr Diab Rep. 2013;13(1):43–50. doi:10.1007/s11892-012-0330-3.

    Article  PubMed  Google Scholar 

  7. Vandorsten JP, Dodson WC, Espeland MA, Grobman WA, Guise JM, Mercer BM, et al. NIH consensus development conference: diagnosing gestational diabetes mellitus. NIH Consens State Sci Statements. 2013;29(1):1–31.

    PubMed  Google Scholar 

  8. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;165(6 Pt 1):1667–72.

    Article  CAS  PubMed  Google Scholar 

  9. Mills JL, Jovanovic L, Knopp R, Aarons J, Conley M, Park E, et al. Physiological reduction in fasting plasma glucose concentration in the first trimester of normal pregnancy: the diabetes in early pregnancy study. Metabolism. 1998;47(9):1140–4.

    Article  CAS  PubMed  Google Scholar 

  10. McIntyre HD, Sacks DA, Barbour LA, Feig DS, Catalano PM, Damm P, et al. Issues with the diagnosis and classification of hyperglycemia in early pregnancy. Diabetes Care. 2016;39(1):53–4. doi:10.2337/dc15-1887.

    Article  PubMed  Google Scholar 

  11. Riskin-Mashiah S, Younes G, Damti A, Auslender R. First-trimester fasting hyperglycemia and adverse pregnancy outcomes. Diabetes Care. 2009;32(9):1639–43. doi:10.2337/dc09-0688.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Riskin-Mashiah S, Damti A, Younes G, Auslender R. First trimester fasting hyperglycemia as a predictor for the development of gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol. 2010;152(2):163–7. doi:10.1016/j.ejogrb.2010.05.036.

    Article  CAS  PubMed  Google Scholar 

  13. Yeral MI, Ozgu-Erdinc AS, Uygur D, Seckin KD, Karsli MF, Danisman AN. Prediction of gestational diabetes mellitus in the first trimester, comparison of fasting plasma glucose, two-step and one-step methods: a prospective randomized controlled trial. Endocrine. 2014;46(3):512–8. doi:10.1007/s12020-013-0111-z.

    Article  CAS  PubMed  Google Scholar 

  14. Forest JC, Garrido-Russo M, Lemay A, Carrier R, Dube JL. Reference values for the oral glucose tolerance test at each trimester of pregnancy. Am J Clin Pathol. 1983;80(6):828–31.

    Article  CAS  PubMed  Google Scholar 

  15. Super DM, Edelberg SC, Philipson EH, Hertz RH, Kalhan SC. Diagnosis of gestational diabetes in early pregnancy. Diabetes Care. 1991;14(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hivert MF, Allard C, Menard J, Ouellet A, Ardilouze JL. Impact of the creation of a specialized clinic for prenatal blood sampling and follow-up care in pregnant women. J Obstet Gynaecol Can. 2012;34(3):236–42.

    Article  PubMed  Google Scholar 

  17. Nielsen LR, Ekbom P, Damm P, Glumer C, Frandsen MM, Jensen DM, et al. HbA1c levels are significantly lower in early and late pregnancy. Diabetes Care. 2004;27(5):1200–1.

    Article  CAS  PubMed  Google Scholar 

  18. Mosca A, Paleari R, Dalfra MG, Di Cianni G, Cuccuru I, Pellegrini G, et al. Reference intervals for hemoglobin A1c in pregnant women: data from an Italian multicenter study. Clin Chem. 2006;52(6):1138–43. doi:10.1373/clinchem.2005.064899.

    Article  CAS  PubMed  Google Scholar 

  19. O’Connor C, O’Shea PM, Owens LA, Carmody L, Avalos G, Nestor L, et al. Trimester-specific reference intervals for haemoglobin A1c (HbA1c) in pregnancy. Clin Chem Lab Med. 2011;50(5):905–9. doi:10.1515/CCLM.2011.397.

    PubMed  Google Scholar 

  20. Lurie S, Mamet Y. Red blood cell survival and kinetics during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2000;93(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto K, Osugi T, Noguchi S, Morimoto Y, Wasada K, Imai S, et al. A1C but not serum glycated albumin is elevated because of iron deficiency in late pregnancy in diabetic women. Diabetes Care. 2010;33(3):509–11. doi:10.2337/dc09-1954.

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto K, Noguchi S, Morimoto Y, Hamada S, Wasada K, Imai S, et al. A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care. 2008;31(10):1945–8. doi:10.2337/dc08-0352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hughes RC, Rowan J, Florkowski CM. Is there a role for HbA1c in pregnancy? Curr Diab Rep. 2016;16(1):5. doi:10.1007/s11892-015-0698-y.

    Article  PubMed  CAS  Google Scholar 

  24. Osmundson SS, Zhao BS, Kunz L, Wang E, Popat R, Nimbal VC, et al. First trimester hemoglobin A1c prediction of gestational diabetes. Am J Perinatol. 2016;33(10):977–82. doi:10.1055/s-0036-1581055.

    Article  PubMed  Google Scholar 

  25. • Hughes RC, Moore MP, Gullam JE, Mohamed K, Rowan J. An early pregnancy HbA1c >/=5.9% (41 mmol/mol) is optimal for detecting diabetes and identifies women at increased risk of adverse pregnancy outcomes. Diabetes Care. 2014;37(11):2953–9. doi:10.2337/dc14-1312. In this large study, first-trimester hemoglobin A1C ≥5.9% was associated with subsequent adverse pregnancy outcomes.

    Article  CAS  PubMed  Google Scholar 

  26. Fong A, Serra AE, Gabby L, Wing DA, Berkowitz KM. Use of hemoglobin A1c as an early predictor of gestational diabetes mellitus. Am J Obstet Gynecol. 2014;211(6):641 e1–7. doi:10.1016/j.ajog.2014.06.016.

    Article  CAS  Google Scholar 

  27. Amylidi S, Mosimann B, Stettler C, Fiedler GM, Surbek D, Raio L. First-trimester glycosylated hemoglobin in women at high risk for gestational diabetes. Acta Obstet Gynecol Scand. 2016;95(1):93–7. doi:10.1111/aogs.12784.

    Article  CAS  PubMed  Google Scholar 

  28. Berggren EK, Boggess KA, Mathew L, Culhane J. First trimester maternal glycated hemoglobin and sex hormone-binding globulin do not predict third trimester glucose intolerance of pregnancy. Reprod Sci. 2016. doi:10.1177/1933719116667230.

  29. Odsaeter IH, Asberg A, Vanky E, Carlsen SM. HbA1c as screening for gestational diabetes mellitus in women with polycystic ovary syndrome. BMC Endocr Disord. 2015;15:38. doi:10.1186/s12902-015-0039-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rowan JA, Budden A, Sadler LC. Women with a nondiagnostic 75 g glucose tolerance test but elevated HbA1c in pregnancy: an additional group of women with gestational diabetes. Aust N Z J Obstet Gynaecol. 2014;54(2):177–80. doi:10.1111/ajo.12166.

    Article  PubMed  Google Scholar 

  31. Osmundson SS, Norton ME, El-Sayed YY, Carter S, Faig JC, Kitzmiller JL. Early screening and treatment of women with prediabetes: a randomized controlled trial. Am J Perinatol. 2016;33(2):172–9. doi:10.1055/s-0035-1563715.

    PubMed  Google Scholar 

  32. Smirnakis KV, Martinez A, Blatman KH, Wolf M, Ecker JL, Thadhani R. Early pregnancy insulin resistance and subsequent gestational diabetes mellitus. Diabetes Care. 2005;28(5):1207–8.

    Article  PubMed  Google Scholar 

  33. Powe CE, Allard C, Battista MC, Doyon M, Bouchard L, Ecker JL, et al. Heterogeneous contribution of insulin sensitivity and secretion defects to gestational diabetes mellitus. Diabetes Care. 2016;39(6):1052–5. doi:10.2337/dc15-2672.

    Article  CAS  PubMed  Google Scholar 

  34. Kautzky-Willer A, Prager R, Waldhausl W, Pacini G, Thomaseth K, Wagner OF, et al. Pronounced insulin resistance and inadequate beta-cell secretion characterize lean gestational diabetes during and after pregnancy. Diabetes Care. 1997;20(11):1717–23.

    Article  CAS  PubMed  Google Scholar 

  35. Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol. 1990;162(4):1008–14.

    Article  CAS  PubMed  Google Scholar 

  36. Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981;68(6):1456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–72.

    Article  CAS  PubMed  Google Scholar 

  38. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990;113(12):909–15.

    Article  CAS  PubMed  Google Scholar 

  39. Grewal E, Kansara S, Kachhawa G, Ammini AC, Kriplani A, Aggarwal N, et al. Prediction of gestational diabetes mellitus at 24 to 28 weeks of gestation by using first-trimester insulin sensitivity indices in Asian Indian subjects. Metabolism. 2012;61(5):715–20. doi:10.1016/j.metabol.2011.10.009.

    Article  CAS  PubMed  Google Scholar 

  40. Bito T, Foldesi I, Nyari T, Pal A. Prediction of gestational diabetes mellitus in a high-risk group by insulin measurement in early pregnancy. Diabet Med. 2005;22(10):1434–9. doi:10.1111/j.1464-5491.2005.01634.x.

    Article  CAS  PubMed  Google Scholar 

  41. Yachi Y, Tanaka Y, Anasako Y, Nishibata I, Saito K, Sone H. Contribution of first trimester fasting plasma insulin levels to the incidence of glucose intolerance in later pregnancy: Tanaka women’s clinic study. Diabetes Res Clin Pract. 2011;92(2):293–8. doi:10.1016/j.diabres.2011.02.012.

    Article  CAS  PubMed  Google Scholar 

  42. Smirnakis KV, Plati A, Wolf M, Thadhani R, Ecker JL. Predicting gestational diabetes: choosing the optimal early serum marker. Am J Obstet Gynecol. 2007;196(4):410 e1-6; discussion e6-7. 10.1016/j.ajog.2006.12.011.

  43. Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab. 1988;67(3):460–4. doi:10.1210/jcem-67-3-460.

    Article  CAS  PubMed  Google Scholar 

  44. Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72(1):83–9. doi:10.1210/jcem-72-1-83.

    Article  CAS  PubMed  Google Scholar 

  45. Katsuki A, Sumida Y, Murashima S, Fujii M, Ito K, Tsuchihashi K, et al. Acute and chronic regulation of serum sex hormone-binding globulin levels by plasma insulin concentrations in male noninsulin-dependent diabetes mellitus patients. J Clin Endocrinol Metab. 1996;81(7):2515–9. doi:10.1210/jcem.81.7.8675570.

    CAS  PubMed  Google Scholar 

  46. Thadhani R, Wolf M, Hsu-Blatman K, Sandler L, Nathan D, Ecker JL. First-trimester sex hormone binding globulin and subsequent gestational diabetes mellitus. Am J Obstet Gynecol. 2003;189(1):171–6.

    Article  CAS  PubMed  Google Scholar 

  47. Maged AM, Moety GA, Mostafa WA, Hamed DA. Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2014;27(11):1108–12. doi:10.3109/14767058.2013.850489.

    Article  CAS  PubMed  Google Scholar 

  48. Caglar GS, Ozdemir ED, Cengiz SD, Demirtas S. Sex-hormone-binding globulin early in pregnancy for the prediction of severe gestational diabetes mellitus and related complications. J Obstet Gynaecol Res. 2012;38(11):1286–93. doi:10.1111/j.1447-0756.2012.01870.x.

    Article  PubMed  CAS  Google Scholar 

  49. Hedderson MM, Xu F, Darbinian JA, Quesenberry CP, Sridhar S, Kim C, et al. Prepregnancy SHBG concentrations and risk for subsequently developing gestational diabetes mellitus. Diabetes Care. 2014;37(5):1296–303. doi:10.2337/dc13-1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nanda S, Savvidou M, Syngelaki A, Akolekar R, Nicolaides KH. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat Diagn. 2011;31(2):135–41. doi:10.1002/pd.2636.

    Article  PubMed  Google Scholar 

  51. Wolf M, Sandler L, Hsu K, Vossen-Smirnakis K, Ecker JL, Thadhani R. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care. 2003;26(3):819–24.

    Article  CAS  PubMed  Google Scholar 

  52. Bossick AS, Peters RM, Burmeister C, Kakumanu N, Shill JE, Cassidy-Bushrow AE. Antenatal inflammation and gestational diabetes mellitus risk among pregnant African-American women. J Reprod Immunol. 2016;115:1–5. doi:10.1016/j.jri.2016.03.005.

    Article  PubMed  Google Scholar 

  53. Qiu C, Sorensen TK, Luthy DA, Williams MA. A prospective study of maternal serum C-reactive protein (CRP) concentrations and risk of gestational diabetes mellitus. Paediatr Perinat Epidemiol. 2004;18(5):377–84. doi:10.1111/j.1365-3016.2004.00578.x.

    Article  PubMed  Google Scholar 

  54. Ozgu-Erdinc AS, Yilmaz S, Yeral MI, Seckin KD, Erkaya S, Danisman AN. Prediction of gestational diabetes mellitus in the first trimester: comparison of C-reactive protein, fasting plasma glucose, insulin and insulin sensitivity indices. J Matern Fetal Neonatal Med. 2015;28(16):1957–62. doi:10.3109/14767058.2014.973397.

    Article  PubMed  CAS  Google Scholar 

  55. • Syngelaki A, Visser GH, Krithinakis K, Wright A, Nicolaides KH. First trimester screening for gestational diabetes mellitus by maternal factors and markers of inflammation. Metabolism. 2016;65(3):131–7. doi:10.1016/j.metabol.2015.10.029. This case-control study suggests that first trimester TNF-alpha and high sensitivity CRP do not have predictive value for GDM beyond clinical characteritics.

    Article  CAS  PubMed  Google Scholar 

  56. D’Anna R, Baviera G, De Vivo A, Facciola G, Di Benedetto A, Corrado F. C-reactive protein as an early predictor of gestational diabetes mellitus. J Reprod Med. 2006;51(1):55–8.

    PubMed  Google Scholar 

  57. Retnakaran R, Hanley AJ, Raif N, Connelly PW, Sermer M, Zinman B. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab. 2003;88(8):3507–12. doi:10.1210/jc.2003-030186.

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Scholl TO, Stein TP. Association of elevated serum ferritin levels and the risk of gestational diabetes mellitus in pregnant women: The Camden study. Diabetes Care. 2006;29(5):1077–82. doi:10.2337/diacare.2951077.

    Article  CAS  PubMed  Google Scholar 

  59. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51(7):2207–13.

    Article  CAS  PubMed  Google Scholar 

  60. Guillemette L, Lacroix M, Battista MC, Doyon M, Moreau J, Menard J, et al. TNFalpha dynamics during the oral glucose tolerance test vary according to the level of insulin resistance in pregnant women. J Clin Endocrinol Metab. 2014;99(5):1862–9. doi:10.1210/jc.2013-4016.

    Article  CAS  PubMed  Google Scholar 

  61. • Bao W, Baecker A, Song Y, Kiely M, Liu S, Zhang C. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism. 2015;64(6):756–64. doi:10.1016/j.metabol.2015.01.013. This recent systematic review summarizes available data on adipokine levels as predictors of subsequent GDM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fasshauer M, Bluher M, Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014;2(6):488–99. doi:10.1016/S2213-8587(13)70176-1.

    Article  CAS  PubMed  Google Scholar 

  63. Ferreira AF, Rezende JC, Vaikousi E, Akolekar R, Nicolaides KH. Maternal serum visfatin at 11–13 weeks of gestation in gestational diabetes mellitus. Clin Chem. 2011;57(4):609–13. doi:10.1373/clinchem.2010.159806.

    Article  CAS  PubMed  Google Scholar 

  64. Coskun A, Ozkaya M, Kiran G, Kilinc M, Arikan DC. Plasma visfatin levels in pregnant women with normal glucose tolerance, gestational diabetes and pre-gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2010;23(9):1014–8. doi:10.3109/14767050903551426.

    Article  CAS  PubMed  Google Scholar 

  65. Lewandowski KC, Stojanovic N, Press M, Tuck SM, Szosland K, Bienkiewicz M, et al. Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance. Diabetologia. 2007;50(5):1033–7. doi:10.1007/s00125-007-0610-7.

    Article  CAS  PubMed  Google Scholar 

  66. Telejko B, Kuzmicki M, Zonenberg A, Szamatowicz J, Wawrusiewicz-Kurylonek N, Nikolajuk A, et al. Visfatin in gestational diabetes: serum level and mRNA expression in fat and placental tissue. Diabetes Res Clin Pract. 2009;84(1):68–75. doi:10.1016/j.diabres.2008.12.017.

    Article  CAS  PubMed  Google Scholar 

  67. Kaygusuz I, Gumus II, Yilmaz S, Simavli S, Uysal S, Derbent AU, et al. Serum levels of visfatin and possible interaction with iron parameters in gestational diabetes mellitus. Gynecol Obstet Invest. 2013;75(3):203–9. doi:10.1159/000348560.

    Article  CAS  PubMed  Google Scholar 

  68. Lain KY, Daftary AR, Ness RB, Roberts JM. First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clin Endocrinol (Oxf). 2008;69(3):407–11. doi:10.1111/j.1365-2265.2008.03198.x.

    Article  Google Scholar 

  69. Nanda S, Poon LC, Muhaisen M, Acosta IC, Nicolaides KH. Maternal serum resistin at 11 to 13 weeks’ gestation in normal and pathological pregnancies. Metabolism. 2012;61(5):699–705. doi:10.1016/j.metabol.2011.10.006.

    Article  CAS  PubMed  Google Scholar 

  70. Palik E, Baranyi E, Melczer Z, Audikovszky M, Szocs A, Winkler G, et al. Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance. Diabetes Res Clin Pract. 2007;76(3):351–7. doi:10.1016/j.diabres.2006.09.005.

    Article  CAS  PubMed  Google Scholar 

  71. Hu S, Liu Q, Huang X, Tan H. Serum level and polymorphisms of retinol-binding protein-4 and risk for gestational diabetes mellitus: a meta-analysis. BMC Pregnancy Childbirth. 2016;16:52. doi:10.1186/s12884-016-0838-7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huang QT, Huang Q, Luo W, Li F, Hang LL, Yu YH, et al. Circulating retinol-binding protein 4 levels in gestational diabetes mellitus: a meta-analysis of observational studies. Gynecol Endocrinol. 2015;31(5):337–44. doi:10.3109/09513590.2015.1005594.

    Article  CAS  PubMed  Google Scholar 

  73. Gursoy AY, Aynaoglu G, Caglar GS, Soylemez F. Early second trimester retinol-binding protein-4 values in cases with or without gestational diabetes mellitus risk factors: a cross-sectional study. J Obstet Gynaecol Res. 2015;41(1):55–61. doi:10.1111/jog.12499.

    Article  PubMed  CAS  Google Scholar 

  74. Nanda S, Nikoletakis G, Markova D, Poon LC, Nicolaides KH. Maternal serum retinol-binding protein-4 at 11–13 weeks’ gestation in normal and pathological pregnancies. Metabolism. 2013;62(6):814–9. doi:10.1016/j.metabol.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  75. Abetew DF, Qiu C, Fida NG, Dishi M, Hevner K, Williams MA, et al. Association of retinol binding protein 4 with risk of gestational diabetes. Diabetes Res Clin Pract. 2013;99(1):48–53. doi:10.1016/j.diabres.2012.10.023.

    Article  CAS  PubMed  Google Scholar 

  76. Khovidhunkit W, Pruksakorn P, Plengpanich W, Tharavanij T. Retinol-binding protein 4 is not associated with insulin resistance in pregnancy. Metabolism. 2012;61(1):65–9. doi:10.1016/j.metabol.2011.05.019.

    Article  CAS  PubMed  Google Scholar 

  77. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6. doi:10.1038/90984.

    Article  CAS  PubMed  Google Scholar 

  78. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5. doi:10.1210/jcem.86.5.7463.

    Article  CAS  PubMed  Google Scholar 

  79. Haghiac M, Basu S, Presley L, Serre D, Catalano PM, Hauguel-de Mouzon S. Patterns of adiponectin expression in term pregnancy: impact of obesity. J Clin Endocrinol Metab. 2014;99(9):3427–34. doi:10.1210/jc.2013-4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen J, Tan B, Karteris E, Zervou S, Digby J, Hillhouse EW, et al. Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines. Diabetologia. 2006;49(6):1292–302. doi:10.1007/s00125-006-0194-7.

    Article  CAS  PubMed  Google Scholar 

  81. Lacroix M, Battista MC, Doyon M, Menard J, Ardilouze JL, Perron P, et al. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Diabetes Care. 2013;36(6):1577–83. doi:10.2337/dc12-1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ravnsborg T, Andersen LL, Trabjerg ND, Rasmussen LM, Jensen DM, Overgaard M. First-trimester multimarker prediction of gestational diabetes mellitus using targeted mass spectrometry. Diabetologia. 2016;59(5):970–9. doi:10.1007/s00125-016-3869-8.

    Article  CAS  PubMed  Google Scholar 

  83. Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T, Luthy DA. Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. J Clin Endocrinol Metab. 2004;89(5):2306–11. doi:10.1210/jc.2003-031201.

    Article  CAS  PubMed  Google Scholar 

  84. Iliodromiti S, Sassarini J, Kelsey TW, Lindsay RS, Sattar N, Nelson SM. Accuracy of circulating adiponectin for predicting gestational diabetes: a systematic review and meta-analysis. Diabetologia. 2016;59(4):692–9. doi:10.1007/s00125-015-3855-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Triantafyllou GA, Paschou SA, Mantzoros CS. Leptin and hormones: energy homeostasis. Endocrinol Metab Clin North Am. 2016;45(3):633–45. doi:10.1016/j.ecl.2016.04.012.

    Article  PubMed  Google Scholar 

  86. Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med. 1997;3(9):1029–33.

    Article  CAS  PubMed  Google Scholar 

  87. Qiu C, Williams MA, Vadachkoria S, Frederick IO, Luthy DA. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstet Gynecol. 2004;103(3):519–25. doi:10.1097/01.AOG.0000113621.53602.7a.

    Article  CAS  PubMed  Google Scholar 

  88. Sommer C, Jenum AK, Waage CW, Morkrid K, Sletner L, Birkeland KI. Ethnic differences in BMI, subcutaneous fat, and serum leptin levels during and after pregnancy and risk of gestational diabetes. Eur J Endocrinol. 2015;172(6):649–56. doi:10.1530/EJE-15-0060.

    Article  CAS  PubMed  Google Scholar 

  89. Maple-Brown L, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B, et al. Maternal pregravid weight is the primary determinant of serum leptin and its metabolic associations in pregnancy, irrespective of gestational glucose tolerance status. J Clin Endocrinol Metab. 2012;97(11):4148–55. doi:10.1210/jc.2012-2290.

    Article  CAS  PubMed  Google Scholar 

  90. Tortoriello DV, Sidis Y, Holtzman DA, Holmes WE, Schneyer AL. Human follistatin-related protein: a structural homologue of follistatin with nuclear localization. Endocrinology. 2001;142(8):3426–34. doi:10.1210/endo.142.8.8319.

    Article  CAS  PubMed  Google Scholar 

  91. Sidis Y, Mukherjee A, Keutmann H, Delbaere A, Sadatsuki M, Schneyer A. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology. 2006;147(7):3586–97. doi:10.1210/en.2006-0089.

    Article  CAS  PubMed  Google Scholar 

  92. Thadhani R, Powe CE, Tjoa ML, Khankin E, Ye J, Ecker J, et al. First-trimester follistatin-like-3 levels in pregnancies complicated by subsequent gestational diabetes mellitus. Diabetes Care. 2010;33(3):664–9. doi:10.2337/dc09-1745.

    Article  CAS  PubMed  Google Scholar 

  93. Karageyim Karsidag AY, Purut YE, Buyukbayrak EE, Orcun A, Menke M. Can first trimester maternal serum follistatin like 3 levels predict developing gestational diabetes mellitus? J Matern Fetal Neonatal Med. 2016:1–4. doi:10.1080/14767058.2016.1235695.

  94. Hu D, Tian T, Guo J, Wang H, Chen D, Dong M. Decreased maternal and placental concentrations of follistatin-like 3 in gestational diabetes. Clin Chim Acta. 2012;413(5–6):533–6. doi:10.1016/j.cca.2011.10.029.

    Article  CAS  PubMed  Google Scholar 

  95. Naf S, Escote X, Ballesteros M, Yanez RE, Simon-Muela I, Gil P, et al. Serum activin A and follistatin levels in gestational diabetes and the association of the Activin A-Follistatin system with anthropometric parameters in offspring. PLoS One. 2014;9(4):e92175. doi:10.1371/journal.pone.0092175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856–69. doi:10.1161/CIRCULATIONAHA.109.853127.

    Article  PubMed  Google Scholar 

  97. Syngelaki A, Kotecha R, Pastides A, Wright A, Nicolaides KH. First-trimester biochemical markers of placentation in screening for gestational diabetes mellitus. Metabolism. 2015;64(11):1485–9. doi:10.1016/j.metabol.2015.07.015.

    Article  CAS  PubMed  Google Scholar 

  98. Ong CY, Lao TT, Spencer K, Nicolaides KH. Maternal serum level of placental growth factor in diabetic pregnancies. J Reprod Med. 2004;49(6):477–80.

    CAS  PubMed  Google Scholar 

  99. Eleftheriades M, Papastefanou I, Lambrinoudaki I, Kappou D, Lavranos D, Akalestos A, et al. Elevated placental growth factor concentrations at 11–14 weeks of gestation to predict gestational diabetes mellitus. Metabolism. 2014;63(11):1419–25. doi:10.1016/j.metabol.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  100. Mosimann B, Amylidi S, Risch L, Wiedemann U, Surbek D, Baumann M, et al. First-trimester placental growth factor in screening for gestational diabetes. Fetal Diagn Ther. 2016;39(4):287–91. doi:10.1159/000441027.

    Article  PubMed  Google Scholar 

  101. Levine RJ, Thadhani R, Qian C, Lam C, Lim KH, Yu KF, et al. Urinary placental growth factor and risk of preeclampsia. JAMA. 2005;293(1):77–85. doi:10.1001/jama.293.1.77.

    Article  CAS  PubMed  Google Scholar 

  102. Smith GC, Crossley JA, Aitken DA, Jenkins N, Lyall F, Cameron AD, et al. Circulating angiogenic factors in early pregnancy and the risk of preeclampsia, intrauterine growth restriction, spontaneous preterm birth, and stillbirth. Obstet Gynecol. 2007;109(6):1316–24. doi:10.1097/01.AOG.0000265804.09161.0d.

    Article  CAS  PubMed  Google Scholar 

  103. Redman CW, Sargent IL. Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta. 2008;29(Suppl A):S73–7. doi:10.1016/j.placenta.2007.11.016.

    Article  PubMed  CAS  Google Scholar 

  104. Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes. 2016;65(3):598–609. doi:10.2337/db15-0966.

    Article  CAS  PubMed  Google Scholar 

  105. Rasanen JP, Snyder CK, Rao PV, Mihalache R, Heinonen S, Gravett MG, et al. Glycosylated fibronectin as a first-trimester biomarker for prediction of gestational diabetes. Obstet Gynecol. 2013;122(3):586–94. doi:10.1097/AOG.0b013e3182a0c88b.

    Article  CAS  PubMed  Google Scholar 

  106. Huhn EA, Fischer T, Gobl CS, Todesco Bernasconi M, Kreft M, Kunze M, et al. Screening of gestational diabetes mellitus in early pregnancy by oral glucose tolerance test and glycosylated fibronectin: study protocol for an international, prospective, multicentre cohort trial. BMJ Open. 2016;6(10):e012115. doi:10.1136/bmjopen-2016-012115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krop M, Lu X, Danser AH, Meima ME. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch. 2013;465(1):87–97. doi:10.1007/s00424-012-1105-z.

    Article  CAS  PubMed  Google Scholar 

  108. Kaneshiro Y, Ichihara A, Sakoda M, Takemitsu T, Nabi AH, Uddin MN, et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol. 2007;18(6):1789–95. doi:10.1681/ASN.2006091062.

    Article  CAS  PubMed  Google Scholar 

  109. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53(6):1077–82. doi:10.1161/HYPERTENSIONAHA.108.127258.

    Article  CAS  PubMed  Google Scholar 

  110. Watanabe N, Morimoto S, Fujiwara T, Suzuki T, Taniguchi K, Mori F, et al. Prediction of gestational diabetes mellitus by soluble (pro)renin receptor during the first trimester. J Clin Endocrinol Metab. 2013;98(6):2528–35. doi:10.1210/jc.2012-4139.

    Article  CAS  PubMed  Google Scholar 

  111. Gokulakrishnan K, Maheswari K, Mahalakshmi MM, Kalaiyarasi G, Bhavadharini B, Pandey GK, et al. Association of Soluble (Pro) Renin Receptor with Gestational Diabetes Mellitus. Endocr Pract. 2015;21(1):7–13. doi:10.4158/EP14254.OR.

    Article  PubMed  Google Scholar 

  112. Bonakdaran S, Azami G, Tara F, Poorali L. Soluble (pro) renin receptor is a predictor of gestational diabetes mellitus. Curr Diabetes Rev. 2016. https://www.ncbi.nlm.nih.gov/pubmed/?term=Soluble+(pro)+renin+953Q1+receptor+is+a+predictor+of+gestational+diabetes+mellitus

  113. Yarrington CD, Cantonwine DE, Seely EW, McElrath TF, Zera CA. The association of alanine aminotransferase in early pregnancy with gestational diabetes. Metab Syndr Relat Disord. 2016;14(5):254–8. doi:10.1089/met.2015.0106.

    Article  CAS  PubMed  Google Scholar 

  114. Leng J, Zhang C, Wang P, Li N, Li W, Liu H, et al. Plasma levels of alanine aminotransferase in the first trimester identify high risk chinese women for gestational diabetes. Sci Rep. 2016;6:27291. doi:10.1038/srep27291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tan PC, Aziz AZ, Ismail IS, Omar SZ. Gamma-glutamyltransferase, alanine transaminase and aspartate transaminase levels and the diagnosis of gestational diabetes mellitus. Clin Biochem. 2012;45(15):1192–6. doi:10.1016/j.clinbiochem.2012.05.025.

    Article  CAS  PubMed  Google Scholar 

  116. Khambalia AZ, Aimone A, Nagubandi P, Roberts CL, McElduff A, Morris JM, et al. High maternal iron status, dietary iron intake and iron supplement use in pregnancy and risk of gestational diabetes mellitus: a prospective study and systematic review. Diabet Med. 2016;33(9):1211–21. doi:10.1111/dme.13056.

    Article  CAS  PubMed  Google Scholar 

  117. Bowers KA, Olsen SF, Bao W, Halldorsson TI, Strom M, Zhang C. Plasma concentrations of ferritin in early pregnancy are associated with risk of gestational diabetes mellitus in women in the Danish National Birth Cohort. J Nutr. 2016;146(9):1756–61. doi:10.3945/jn.115.227793.

    Article  CAS  PubMed  Google Scholar 

  118. Theriault S, Giguere Y, Masse J, Girouard J, Forest JC. Early prediction of gestational diabetes: a practical model combining clinical and biochemical markers. Clin Chem Lab Med. 2016;54(3):509–18. doi:10.1515/cclm-2015-0537.

    Article  CAS  PubMed  Google Scholar 

  119. Savvidou M, Nelson SM, Makgoba M, Messow CM, Sattar N, Nicolaides K. First-trimester prediction of gestational diabetes mellitus: examining the potential of combining maternal characteristics and laboratory measures. Diabetes. 2010;59(12):3017–22. doi:10.2337/db10-0688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille E. Powe.

Ethics declarations

Conflict of Interest

Camille E. Powe declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diabetes and Pregnancy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powe, C.E. Early Pregnancy Biochemical Predictors of Gestational Diabetes Mellitus. Curr Diab Rep 17, 12 (2017). https://doi.org/10.1007/s11892-017-0834-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0834-y

Keywords

Navigation