Skip to main content

Advertisement

Log in

Update on Blood Pressure Control and Renal Outcomes in Diabetes Mellitus

  • Microvascular Complications—Nephropathy (T Isakova, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is associated with a high incidence of cardiovascular (CV) morbidity and mortality. Although relationships between hypertension and diabetic nephropathy are complex, blood pressure (BP) control is an important management strategy in the prevention of onset and progression of DN in patients with diabetes mellitus (DM). Recent guidelines recommend less stringent BP targets among patients with type 2 DM and chronic kidney disease. These recommendations are based mostly on lack of benefit in CV outcomes with a low BP target. We review the current information on efficacy of BP control in improving renal outcomes in patients with type 2 DM. Presently, although intensive BP control has been was beneficial in decreasing albuminuria, it has not translated into reductions in risks of hard renal endpoints, such as progression to end-stage renal disease, the need for renal replacement therapy, and mortality from renal causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AACE:

American Association of Clinical Endocrinologists

ADVANCE:

Action in Diabetes and Vascular Disease: Preterax and Diamicron MR-Controlled Evaluation

ACCORD:

Action to Control Cardiovascular Risk in Diabetes

ADA:

American Diabetes Association

ACCF:

American College of Cardiology Foundation

AHA:

American Heart Association

ASH:

American Society of Hypertension

CHEP:

Canadian Hypertension Education Program

ESH:

European Society of Hypertension

ESC:

European Society of Cardiology

ISH:

International Society of Hypertension

JNC:

Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure

KDIGO:

Kidney Disease Improving Global Outcomes

NHANES:

National Health and the Nutrition Examination Survey

NICE:

National Institute for Health and Care Excellence

NKF KDOQI:

National Kidney Foundation Kidney Disease Outcomes Quality Initiative

ONTARGET:

Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial

USRDS:

US Renal Data System

VADT:

Veterans Affairs Diabetes Trial

VA NEPHRON-D:

Veterans Affairs Nephropathy in Diabetes

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    PubMed  Google Scholar 

  2. Shimizu M, Furuichi K, Yokoyama H, et al. Kidney lesions in diabetic patients with normoalbuminuric renal insufficiency. Clin Exp Nephrol. 2014;18(2):305–12.

    CAS  PubMed  Google Scholar 

  3. Drummond K, Mauer M, International Diabetic Nephropathy Study Group. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51(5):1580–7.

    CAS  PubMed  Google Scholar 

  4. Gilg J, Castledine C, Fogarty D. Chapter 1 UK RRT incidence in 2010: national and centre-specific analyses. Nephron Clin Pract. 2012;120 Suppl 1:c1–27.

    PubMed  Google Scholar 

  5. Foley RN, Collins AJ. End-stage renal disease in the United States: an update from the United States Renal Data System. J Am Soc Nephrol. 2007;18(10):2644–8.

    PubMed  Google Scholar 

  6. Collins AJ, Foley RN, Chavers B, et al. US Renal Data System 2013 Annual Data Report. Am J Kidney Dis. 2014;63(1 Suppl):A7.

    PubMed  Google Scholar 

  7. Whelton PK, Klag MJ. Hypertension as a risk factor for renal disease. Rev Clin Epidemiol Evid Hypertens. 1989;13(5 Suppl):I19–27.

  8. Hallan SI, Coresh J, Astor BC, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17(8):2275–84.

    PubMed  Google Scholar 

  9. Foley RN, Collins AJ. The USRDS: what you need to know about what it can and can’t tell us about ESRD. Clin J Am Soc Nephrol. 2013;8(5):845–51.

    PubMed  Google Scholar 

  10. Cheng X, Nayyar S, Wang M, et al. Mortality rates among prevalent hemodialysis patients in Beijing: a comparison with USRDS data. Nephrol Dial Transplant. 2013;28(3):724–32.

    PubMed  Google Scholar 

  11. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.

    PubMed  Google Scholar 

  12. Williams ME. Diabetic kidney disease in elderly individuals. Med Clin North Am. 2013;97(1):75–89.

    PubMed  Google Scholar 

  13. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    PubMed  Google Scholar 

  14. Kurella M, Covinsky KE, Collins AJ, et al. Octogenarians and nonagenarians starting dialysis in the United States. Ann Intern Med. 2007;146(3):177–83.

    PubMed  Google Scholar 

  15. Mann JF, Gerstein HC, Pogue J, et al. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med. 2001;134(8):629–36.

    CAS  PubMed  Google Scholar 

  16. Barkoudah E, Skali H, Uno H, et al. Mortality rates in trials of subjects with type 2 diabetes. J Am Heart Assoc. 2012;1(1):8–15.

    PubMed Central  PubMed  Google Scholar 

  17. Levey AS, Cattran D, Friedman A, et al. Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis. 2009;54(2):205–26.

    PubMed  Google Scholar 

  18. Molitch ME. ACE inhibitors and diabetic nephropathy. Diabetes Care. 1994;17(7):756–60.

    CAS  PubMed  Google Scholar 

  19. Viberti GC, Hill RD, Jarrett RJ, et al. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1(8287):1430–2.

    CAS  PubMed  Google Scholar 

  20. Walker JD, Close CF, Jones SL, et al. Glomerular structure in type-1 (insulin-dependent) diabetic patients with normo- and microalbuminuria. Kidney Int. 1992;41(4):741–8.

    CAS  PubMed  Google Scholar 

  21. Osterby R. Glomerular structural changes in type 1 (insulin-dependent) diabetes mellitus: causes, consequences, and prevention. Diabetologia. 1992;35(9):803–12.

    CAS  PubMed  Google Scholar 

  22. Ismail-Beigi F, Craven T, Banerji MA, et al. ACCORD Trial Group: effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    PubMed Central  PubMed  Google Scholar 

  23. de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65(6):2309–20.

    PubMed  Google Scholar 

  24. Parving HH, Persson F, Lewis JB, et al. AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358(23):2433–46.

    CAS  PubMed  Google Scholar 

  25. Agrawal L, Azad N, Emanuele NV, et al. Veterans Affairs Diabetes Trial (VADT) Study Group: observation on renal outcomes in the Veterans Affairs Diabetes Trial. Diabetes Care. 2011;34(9):2090–4. This part of the VADT study showed that a higher baseline SBP had a significant risk in worsening of eGFR in patients with T2DM.

    PubMed Central  PubMed  Google Scholar 

  26. Parving HH, Andersen AR, Hommel E, et al. Effects of long-term antihypertensive treatment on kidney function in diabetic nephropathy. Hypertension. 1985;7(6 Pt 2):II114–7.

    CAS  PubMed  Google Scholar 

  27. KDIGO. Chapter 1: definition and classification of CKD. Kidney Int Suppl. 2011;3(1):19–62.

    Google Scholar 

  28. Mogensen CE, Vestbo E, Poulsen PL, et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care. 1995;18(4):572–81.

    CAS  PubMed  Google Scholar 

  29. Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med. 2002;346(15):1145–51.

    PubMed  Google Scholar 

  30. Gross JL, de Azevedo MJ, Silveiro SP, et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.

    PubMed  Google Scholar 

  31. Deckert T, Yokoyama H, Mathiesen E, et al. Cohort study of predictive value of urinary albumin excretion for atherosclerotic vascular disease in patients with insulin dependent diabetes. BMJ. 1996;312(7035):871–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, et al. Albuminuria reflects widespread vascular damage. Steno Hypothesis Diabetol. 1989;32(4):219–26. Review.

    CAS  Google Scholar 

  33. Gerstein HC, Mann JF, Yi Q, et al. HOPE Study Investigators. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421–6.

    CAS  PubMed  Google Scholar 

  34. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310(6):356–60.

    CAS  PubMed  Google Scholar 

  35. Jarrett RJ, Viberti GC, Argyropoulos A, et al. Microalbuminuria predicts mortality in non-insulin-dependent diabetics. Diabet Med. 1984;1(1):17–9.

    CAS  PubMed  Google Scholar 

  36. Mattock MB, Morrish NJ, Viberti G, et al. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes. 1992;41(6):736–41.

    CAS  PubMed  Google Scholar 

  37. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.

    Google Scholar 

  38. Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis. 2003;41(1):1–12.

    PubMed  Google Scholar 

  39. American Diabetes Association. (9)Microvascular complications and foot care. Diabetes Care. 2015;38(Suppl):S58–66.

    Google Scholar 

  40. Mancia G, Fagard R, Narkiewicz K, et al. Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    CAS  PubMed  Google Scholar 

  41. Kalaitzidis R, Li S, Wang C, et al. Hypertension in early-stage kidney disease: an update from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2009;53(4 Suppl 4):S22–31.

    PubMed  Google Scholar 

  42. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13.

    PubMed Central  Google Scholar 

  43. Krolewski AS, Fogarty DG, Warram JH. Hypertension and nephropathy in diabetes mellitus: what is inherited and what is acquired? Diabetes Res Clin Pract. 1998;39(Suppl):S1–14.

    PubMed  Google Scholar 

  44. Nelson RG, Pettitt DJ, Baird HR, et al. Pre-diabetic blood pressure predicts urinary albumin excretion after the onset of type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia. 1993;36(10):998–1001.

    CAS  PubMed  Google Scholar 

  45. Peralta CA, Hicks LS, Chertow GM, et al. Control of hypertension in adults with chronic kidney disease in the United States. Hypertension. 2005;45(6):1119–24.

    CAS  PubMed  Google Scholar 

  46. Radbill B, Murphy B, LeRoith D. Rationale and strategies for early detection and management of diabetic kidney disease. Mayo Clin Proc. 2008;83(12):1373–81.

    PubMed  Google Scholar 

  47. Kowalski A, Krikorian A, Lerma EV. Diabetic nephropathy for the primary care provider: new understandings on early detection and treatment. Ochsner J. 2014;14(3):369–79.

    PubMed Central  PubMed  Google Scholar 

  48. Hill CJ, Cardwell CR, Patterson CC, et al. Chronic kidney disease and diabetes in the national health service: a cross-sectional survey of the U.K. national diabetes audit. Diabet Med. 2014;31(4):448–54.

    CAS  PubMed  Google Scholar 

  49. Bailey RA, Wang Y, Zhu V, et al. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes. 2014;7:415.

    PubMed Central  PubMed  Google Scholar 

  50. Garg AX, Kiberd BA, Clark WF, et al. Albuminuria and renal insufficiency prevalence guides population screening: results from the NHANES III. Kidney Int. 2002;61(6):2165–75.

    PubMed  Google Scholar 

  51. MacIsaac RJ, Panagiotopoulos S, McNeil KJ, et al. Is nonalbuminuric renal insufficiency in type 2 diabetes related to an increase in intrarenal vascular disease? Diabetes Care. 2006;29(7):1560–6.

    PubMed  Google Scholar 

  52. Perkins BA, Ficociello LH, Roshan B, et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77(1):57–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52(4):1036–40.

    CAS  PubMed  Google Scholar 

  54. Kramer HJ, Nguyen QD, Curhan G, et al. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289(24):3273–7.

    PubMed  Google Scholar 

  55. Mogensen CE. How to protect the kidney in diabetic patients: with special reference to IDDM. Diabetes. 1997;46 Suppl 2:S104–11.

  56. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64–78.

    PubMed  Google Scholar 

  57. Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet. 1998;352(9123):213–9.

    CAS  PubMed  Google Scholar 

  58. Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325(12):836–42.

    CAS  PubMed  Google Scholar 

  59. Adler S. Diabetic nephropathy: linking histology, cell biology, and genetics. Kidney Int. 2004;66(5):2095–106.

    PubMed  Google Scholar 

  60. Wolf G, Ziyadeh F. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 2007;106:26–31.

    Google Scholar 

  61. Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol. 2003;23(2):194–9.

    CAS  PubMed  Google Scholar 

  62. Ficociello LH, Perkins BA, Roshan B, et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care. 2009;32(5):889–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Williams ME. The goal of blood pressure control for prevention of early diabetic microvascular complications. Curr Diab Rep. 2011;11(4):323–9.

    PubMed  Google Scholar 

  64. Parving HH, Gall MA, Skøtt P, et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int. 1992;41(4):758–62.

    CAS  PubMed  Google Scholar 

  65. Tervaert TW, Mooyaart AL, Amann K, et al. Renal pathology society: pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63.

    PubMed  Google Scholar 

  66. White KE, Bilous RW. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J Am Soc Nephrol. 2000;11(9):1667–73.

    CAS  PubMed  Google Scholar 

  67. Parving HH, Hommel E, Mathiesen E, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. Br Med J (Clin Res Ed). 1988;296(6616):156–60.

    CAS  Google Scholar 

  68. Gall MA, Rossing P, Skøtt P, et al. Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1991;34(9):655–61.

    CAS  PubMed  Google Scholar 

  69. Nosadini R, Velussi M, Brocco E, et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes. 2000;49(3):476–84.

    CAS  PubMed  Google Scholar 

  70. Gambara V, Mecca G, Remuzzi G, et al. Heterogeneous nature of renal lesions in type II diabetes. J Am Soc Nephrol. 1993;3(8):1458–66.

    CAS  PubMed  Google Scholar 

  71. Feldt-Rasmussen B, Borch-Johnsen K, Mathiesen ER. Hypertension in diabetes as related to nephropathy. Early blood pressure changes. Hypertension. 1985;7(6 Pt 2):II18–20.

    CAS  PubMed  Google Scholar 

  72. Ritz E, Ogata H, Orth SR. Smoking: a factor promoting onset and progression of diabetic nephropathy. Diabetes Metab. 2000;26 Suppl 4:54–63.

    CAS  PubMed  Google Scholar 

  73. Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877–84.

    CAS  PubMed  Google Scholar 

  74. Ballard DJ, Humphrey LL, Melton 3rd LJ, et al. Epidemiology of persistent proteinuria in type II diabetes mellitus. Population-based study in Rochester, Minnesota. Diabetes. 1988;37(4):405–12.

    CAS  PubMed  Google Scholar 

  75. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290(16):2159–67.

    Google Scholar 

  76. Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes. 1994;43(10):1248–53.

    CAS  PubMed  Google Scholar 

  77. Nielsen S, Schmitz A, Poulsen PL, et al. Albuminuria and 24-h ambulatory blood pressure in normoalbuminuric and microalbuminuric NIDDM patients. A longitudinal study. Diabetes Care. 1995;18(11):1434–41.

    CAS  PubMed  Google Scholar 

  78. Neil A, Hawkins M, Potok M, et al. A prospective population-based study of microalbuminuria as a predictor of mortality in NIDDM. Diabetes Care. 1993;16(7):996–1003.

    CAS  PubMed  Google Scholar 

  79. Knudsen ST, Laugesen E, Hansen KW, et al. Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia. 2009;52(4):698–704.

    CAS  PubMed  Google Scholar 

  80. Laugesen E, Hansen KW, Knudsen ST, et al. Increased ambulatory arterial stiffness index and pulse pressure in microalbuminuric patients with type 1 diabetes. Am J Hypertens. 2009;22(5):513–9.

    PubMed  Google Scholar 

  81. The DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  82. Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet. 1993;341(8856):1306–9.

    CAS  PubMed  Google Scholar 

  83. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998 Sep 12;352(9131):837–53. Erratum in: Lancet 1999 Aug 14;354(9178):602.

  84. Duckworth W, Abraira C, Moritz T, et al.; VADT Investigators: Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009 Jan 8;360(2):129–39. Erratum in: N Engl J Med. 2009 Sep 3;361(10):1024–5. N Engl J Med. 2009 Sep 3;361(10):1028.

  85. DCCT/EDIC Research Group, de Boer IH, Sun W, Cleary PA, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365(25):2366–76.

    Google Scholar 

  86. White P. Natural course and prognosis of juvenile diabetes. Diabetes. 1956;5(6):445–50.

    CAS  PubMed  Google Scholar 

  87. Borch-Johnsen K, Andersen PK, Deckert T. The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1985;28(8):590–6.

    CAS  PubMed  Google Scholar 

  88. Rosenzweig JL, Ferrannini E, Grundy SM, Haffner SM, Heine RJ, Horton ES, et al. Endocrine Society. Primary prevention of cardiovascular disease and type 2 diabetes in patients at metabolic risk: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(10):3671–89.

    CAS  PubMed  Google Scholar 

  89. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group Lancet. 1998;351(9118):1755–62.

    CAS  Google Scholar 

  90. Wang JG, Staessen JA, Franklin SS, et al. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension. 2005;45(5):907–13.

    CAS  PubMed  Google Scholar 

  91. Molitch ME, Steffes M, Sun W, et al. Epidemiology of Diabetes Interventions and Complications Study Group. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33(7):1536–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Patel A, ADVANCE Collaborative Group, MacMahon S, Chalmers J, Neal B, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370(9590):829–40.

    CAS  PubMed  Google Scholar 

  93. Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J (Clin Res Ed). 1982;285(6343):685–8.

    CAS  Google Scholar 

  94. Parving HH, Rossing P. The use of antihypertensive agents in prevention and treatment of diabetic nephropathy. Curr Opin Nephrol Hypertens. 1994;3:292–300.

    CAS  PubMed  Google Scholar 

  95. Parving HH, Andersen AR, Smidt UM, et al. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1(8335):1175–9.

    CAS  PubMed  Google Scholar 

  96. Rossing P, Hommel E, Smidt UM, et al. Reduction in albuminuria predicts diminished progression in diabetic nephropathy. Kidney Int Suppl. 1994;45:S145–9.

    CAS  PubMed  Google Scholar 

  97. Parving HH, Andersen AR, Smidt UM, et al. Diabetic nephropathy and arterial hypertension. The effect of antihypertensive treatment. Diabetes. 1983;83 Suppl 2.

  98. Parving HH, Andersen AR, Smidt UM, et al. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J (Clin Res Ed). 1987;294(6585):1443–7.

    CAS  Google Scholar 

  99. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Google Scholar 

  100. HOPE: Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000 Jan 22;355(9200):253–9. Erratum in: Lancet 2000 Sep 2;356(9232):860.

  101. Mann JF, Schmieder RE, McQueen M, ONTARGET investigators, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.

    CAS  PubMed  Google Scholar 

  102. Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313(6):603–15. This meta-analysis showed that SBP lowering to ≤130 mmHg was associated with lower risks for stroke and albuminuria. A 10-mmHg reduction in SBP was associated with lower risk of all-cause mortality, CVD events, and stroke. The association with renal failure was not significant.

    CAS  PubMed  Google Scholar 

  103. McBrien K, Rabi DM, Campbell N, et al. Intensive and standard blood pressure targets in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med. 2012;172(17):1296–303.

    PubMed  Google Scholar 

  104. Zoungas S, de Galan BE, Ninomiya T, et al. Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes: new results from the ADVANCE trial. Diabetes Care. 2009;32(11):2068–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Arguedas JA, Leiva V, Wright JM. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane Database Syst Rev. 2013;10, CD008277.

    PubMed  Google Scholar 

  106. Anderson AH, Yang W, Townsend RR, Chronic Renal Insufficiency Cohort Study Investigators, et al. Time-updated systolic blood pressure and the progression of chronic kidney disease: a cohort study. Ann Intern Med. 2015;162(4):258–65.

    PubMed  Google Scholar 

  107. Bangalore S, Kumar S, Lobach I, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and Bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123(24):2799–810. This meta-analysis showed that more aggressive SBP lowering ≤130 mmHg had no benefit for both macro- and microvascular outcomes (except for reduction in albuminuria) other than stroke reduction.

    CAS  PubMed  Google Scholar 

  108. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    CAS  PubMed  Google Scholar 

  109. Gaede P, Vedel P, Parving HH, et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353(9153):617–22.

    CAS  PubMed  Google Scholar 

  110. Anderson RJ, Bahn GD, Emanuele NV, VADT Study Group, et al. Blood pressure and pulse pressure effects on renal outcomes in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2014;37(10):2782–8. This post-hoc study of the VADT, it showed that SBP ≥130 mmHg and PP >60 mmHg were associated with worsening ACR and SBP <130 mmHg may lessen ACR worsening.

    PubMed  Google Scholar 

  111. Pálsson R, Patel UD. Cardiovascular complications of diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21(3):273–80.

    PubMed Central  PubMed  Google Scholar 

  112. Collins AJ, Li S, Gilbertson DT, et al. Chronic kidney disease and cardiovascular disease in the Medicare population. Kidney Int Suppl. 2003;87:S24–31.

    PubMed  Google Scholar 

  113. Barzilay JI, Davis BR, Pressel SL, ALLHAT Collaborative Research Group, et al. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: the ALLHAT Diabetes Extension Study. Circ Cardiovasc Qual Outcomes. 2012;5(2):153–62.

    PubMed Central  PubMed  Google Scholar 

  114. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–97.

    Google Scholar 

  115. Hillege HL, Fidler V, Diercks GF, et al. Prevention of renal and vascular end stage disease (PREVEND) study group. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106(14):1777–82.

    CAS  PubMed  Google Scholar 

  116. Lewis EJ, Hunsicker LG, Bain RP, et al: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993 Nov 11;329(20):1456–62. Erratum in: N Engl J Med 1993 Jan 13;330(2):152.

  117. Björck S, Mulec H, Johnsen SA, et al. Renal protective effect of enalapril in diabetic nephropathy. BMJ. 1992;304(6823):339–43.

    PubMed Central  PubMed  Google Scholar 

  118. Eijkelkamp WB, Zhang Z, Remuzzi G, et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J Am Soc Nephrol. 2007;18(5):1540–6.

    CAS  PubMed  Google Scholar 

  119. Lebovitz HE, Wiegmann TB, Cnaan A, et al. Renal protective effects of enalapril in hypertensive NIDDM: role of baseline albuminuria. Kidney Int Suppl. 1994;45:S150–5.

    CAS  PubMed  Google Scholar 

  120. Parving HH, Lehnert H, Bröchner-Mortensen J, Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870–8.

    CAS  PubMed  Google Scholar 

  121. Brenner BM, Cooper ME, de Zeeuw D, RENAAL Study Investigators, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    CAS  PubMed  Google Scholar 

  122. Lewis EJ, Hunsicker LG, Clarke WR, Collaborative Study Group, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    CAS  PubMed  Google Scholar 

  123. Hall JE. The renin-angiotensin system: renal actions and blood pressure regulation. Compr Ther. 1991;17(5):8–17.

    CAS  PubMed  Google Scholar 

  124. Strippoli GF, Craig MC, Schena FP, et al. Role of blood pressure targets and specific antihypertensive agents used to prevent diabetic nephropathy and delay its progression. J Am Soc Nephrol. 2006;17(4 Suppl 2):S153–5.

    PubMed  Google Scholar 

  125. Bakris GL, Weir MR. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch Intern Med. 2000;160(5):685–93.

    CAS  PubMed  Google Scholar 

  126. Heeg JE, de Jong PE, van der Hem GK, et al. Reduction of proteinuria by angiotensin converting enzyme inhibition. Kidney Int. 1987;32(1):78–83.

    CAS  PubMed  Google Scholar 

  127. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Google Scholar 

  128. Fried LF, Emanuele N, Zhang JH, VA NEPHRON-D Investigators, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.

    CAS  PubMed  Google Scholar 

  129. Parving HH, Brenner BM, McMurray JJ, et al: ALTITUDE Investigators. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012.

  130. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2012;2:337–414.

    Google Scholar 

  131. Flack JM, Sica DA, Bakris G, et al. International Society on Hypertension in Blacks. Management of high blood pressure in Blacks: an update of the International Society on Hypertension in Blacks consensus statement. Hypertension. 2010;56(5):780–800.

    CAS  PubMed  Google Scholar 

  132. Aronow WS, Fleg JL, Pepine CJ, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. J Am Soc Hypertens. 2011;5(4):259–352.

    PubMed  Google Scholar 

  133. Garber AJ, Abrahamson MJ, Barzilay JI, et al. American Association of Clinical Endocrinologists’ comprehensive diabetes management algorithm 2013 consensus statement—executive summary. Endocr Pract. 2013;19(3):536–57.

    PubMed Central  PubMed  Google Scholar 

  134. Dasgupta K, Quinn RR, Zarnke KB, Canadian Hypertension Education Program, et al. The 2014 Canadian hypertension education program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2014;30(5):485–501.

    PubMed  Google Scholar 

  135. Hypertension without compelling and with compelling indications: 2013 CHEP recommendations. Hypertension Canada Website. http://www.hypertension.ca/en/professional. Accessed 17 Feb 2015.

  136. Ruzicka M, Quinn RR, McFarlane P, et al. Canadian society of nephrology commentary on the 2012 KDIGO clinical practice guideline for the management of blood pressure in CKD. Am J Kidney Dis. 2014;63(6):869–87.

    PubMed  Google Scholar 

  137. Akbari A, Clase CM, Acott P, et al. Canadian society of nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management. Am J Kidney Dis. 2015;65(2):177–205.

    CAS  PubMed  Google Scholar 

  138. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  PubMed  Google Scholar 

  139. Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens. 2014;32(1):3–15.

    CAS  PubMed  Google Scholar 

  140. American Diabetes Association. Cardiovascular disease and risk management. Sec.8. In Standards of Medical Care in Diabetes. Diabetes Care. 2015;38(Suppl1):S49–57.

    Google Scholar 

  141. National Institute for Health and Care Excellence: Hypertension (CG127) http://www.nice.org.uk/guidance/cg127. Accessed 17 Feb 2015.

  142. National Kidney Foundation: KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis. 2012;60(5):850–86.

  143. Chobanian AV, Bakris GL, Black HR, et al. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    CAS  PubMed  Google Scholar 

  144. Mancia G, De Backer G, Dominiczak A, et al: ESH-ESC Task Force on the Management of Arterial Hypertension. 2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens. 2007 Sep;25(9):1751–62. Erratum in: J Hypertens. 2007 Oct;25(10):2184.

  145. Whitworth JA, World Health Organization, International Society of Hypertension Writing Group. World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983–92.

    PubMed  Google Scholar 

  146. Williams B, Poulter NR, Brown MJ, et al: BHS guidelines working party, for the British Hypertension Society. British Hypertension Society guidelines for hypertension management 2004 (BHS-IV): summary. BMJ. 2004 Mar 13;328(7440):634–40. Erratum in: BMJ. 2004 Apr 17;328(7445):926.

  147. Torre JJ, Bloomgarden ZT, Dickey RA, et al. AACE Hypertension Task Force. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of hypertension. Endocr Pract. 2006;12(2):193–222.

    PubMed  Google Scholar 

  148. D’Agostino RB, Belanger AJ, Kannel WB, et al. Relation of low diastolic blood pressure to coronary heart disease death in presence of myocardial infarction: the Framingham Study. BMJ. 1991;303(6799):385–9.

    PubMed Central  PubMed  Google Scholar 

  149. Boutitie F, Gueyffier F, Pocock S, et al. INDANA Project Steering Committee. Individual data analysis of antihypertensive intervention: J-shaped relationship between blood pressure and mortality in hypertensive patients: new insights from a meta-analysis of individual-patient data. Ann Intern Med. 2002;136(6):438–48.

    PubMed  Google Scholar 

  150. Anderson RJ, Bahn GD, Moritz TE, VADT Study Group, et al. Blood pressure and cardiovascular disease risk in the Veterans Affairs Diabetes Trial. Diabetes Care. 2011;34(1):34–8.

    PubMed Central  PubMed  Google Scholar 

  151. Pohl MA, Blumenthal S, Cordonnier DJ, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005;16(10):3027–37.

    CAS  PubMed  Google Scholar 

  152. So WY, Kong AP, Ma RC, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006;29(9):2046–52.

    PubMed  Google Scholar 

  153. Wilhelmsen L. Risks of untreated hypertension. A discussion. Hypertension. 1989;13(5 Suppl):I33–5.

    CAS  PubMed  Google Scholar 

  154. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44.

    CAS  PubMed  Google Scholar 

  155. Cheung BM, Ong KL, Cherny SS, et al. Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am J Med. 2009;122(5):443–53.

    PubMed  Google Scholar 

  156. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA. 2010;303(20):2043–50.

    CAS  PubMed  Google Scholar 

  157. Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA. 2003;290(2):199–206.

    PubMed  Google Scholar 

  158. Sakhuja A, Textor SC, Taler SJ. Uncontrolled hypertension by the 2014 evidence-based guideline: results from NHANES 2011–2012. J Hypertens. 2015;33(3):644–52.

    CAS  PubMed  Google Scholar 

  159. Moran AE, Odden MC, Thanataveerat A, et al. Cost-effectiveness of hypertension therapy according to 2014 guidelines. N Engl J Med. 2015;372(5):447–55.

    CAS  PubMed  Google Scholar 

  160. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mark Henry Joven declares he has no conflict of interest. Robert J. Anderson discloses clinical trial funds from Merck, Astra Zeneca, Bristol-Myers Squibb, and Boehringer Ingelheim.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Henry Joven.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joven, M.H., Anderson, R.J. Update on Blood Pressure Control and Renal Outcomes in Diabetes Mellitus. Curr Diab Rep 15, 44 (2015). https://doi.org/10.1007/s11892-015-0613-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0613-6

Keywords

Navigation