Skip to main content

Advertisement

Log in

Genetics of Type 2 Diabetes in East Asian Populations

  • Genetics (T Frayling, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Because type 2 diabetes (T2D) is highly familial, there has been a concentrated effort to uncover the genetic basis of T2D worldwide over the last decade. In East Asians, T2D is experiencing a rapidly rising prevalence that is characterized by a relatively lower body mass index, as compared with that in Europeans. To date, at least 15 convincing T2D loci have been identified from large-scale genome-wide association studies and meta-analyses in East Asians. Many of these are likely responsible for pancreatic β cell function, as indicated in studies from Europeans. Many T2D loci have been replicated across the ethnic groups. There are, however, substantial interethnic differences in frequency and effect size of these risk alleles. Despite accumulating genetic information on T2D, there are still limitations in our ability to explain the rapidly rising prevalence and lean phenotype of disease observed in East Asians, suggesting that more extensive work using diverse research strategies is needed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Federation ID. IDF Diabetes Atlas. 2011;5th ed.

  2. Zhang P, Zhang X, Brown J, et al. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(3):293–301.

    Article  PubMed  Google Scholar 

  3. • Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA: J Am Med Assoc. 2009;301(20):2129–40. This review provides a thorough description on the epidemiology of type 2 diabetes in popuations in East Asian ancestry groups.

    Article  CAS  Google Scholar 

  4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249–57.

    Article  PubMed  Google Scholar 

  5. Lee JW, Brancati FL, Yeh HC. Trends in the prevalence of type 2 diabetes in Asians versus whites: results from the United States national health interview survey, 1997–2008. Diabetes Care. 2011;34(2):353–7.

    Article  PubMed  Google Scholar 

  6. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  7. Valdez R. Detecting undiagnosed type 2 diabetes: family history as a risk factor and screening tool. J Diabetes Sci Technol. 2009;3(4):722–6.

    PubMed  Google Scholar 

  8. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study. Diabetologia. 1999;42(2):139–45.

    Article  PubMed  CAS  Google Scholar 

  9. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.

    Article  PubMed  CAS  Google Scholar 

  10. Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568–72.

    Article  PubMed  CAS  Google Scholar 

  11. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–3.

    Article  PubMed  CAS  Google Scholar 

  12. Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39(8):951–3.

    Article  PubMed  CAS  Google Scholar 

  13. Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39(8):977–83.

    Article  PubMed  CAS  Google Scholar 

  14. International HapMap C. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  Google Scholar 

  15. Diabetes Genetics Initiative of Broad Institute of H, Mit LU, Novartis Institutes of BioMedical R, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.

    Article  Google Scholar 

  16. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41.

    Article  PubMed  CAS  Google Scholar 

  17. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

    Article  PubMed  CAS  Google Scholar 

  18. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5.

    Article  PubMed  CAS  Google Scholar 

  19. Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41(10):1110–5.

    Article  PubMed  CAS  Google Scholar 

  20. Qi L, Cornelis MC, Kraft P, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet. 2010;19(13):2706–15.

    Article  PubMed  CAS  Google Scholar 

  21. Kong A, Steinthorsdottir V, Masson G, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462(7275):868–74.

    Article  PubMed  CAS  Google Scholar 

  22. • Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nature Genet. 2008;40(9):1092–7. This article reports genome-wide association results for type 2 diabetes first performed in East Asian populations.

    Article  PubMed  CAS  Google Scholar 

  23. • Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nature Genet. 2008;40(9):1098–102. This article reports genome-wide association results for type 2 diabetes first performed in East Asian populations.

    Article  PubMed  CAS  Google Scholar 

  24. Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42(10):864–8.

    Article  PubMed  CAS  Google Scholar 

  25. Tsai FJ, Yang CF, Chen CC, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6(2):e1000847.

    Article  PubMed  Google Scholar 

  26. Shu XO, Long J, Cai Q, et al. Identification of new genetic risk variants for type 2 diabetes. PLoS genetics. Sep 2010;6(9).

  27. Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9.

    Article  PubMed  CAS  Google Scholar 

  28. Parra EJ, Below JE, Krithika S, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia. 2011;54(8):2038–46.

    Article  PubMed  CAS  Google Scholar 

  29. Below JE, Gamazon ER, Morrison JV, et al. Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals. Diabetologia. 2011;54(8):2047–55.

    Article  PubMed  CAS  Google Scholar 

  30. Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1):e29202.

    Article  PubMed  CAS  Google Scholar 

  31. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

    Article  PubMed  CAS  Google Scholar 

  32. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.

    Article  PubMed  CAS  Google Scholar 

  33. •• Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nature Genet. 2012;44(1):67–72. This article provides a number of association results for type 2 diabetes from the largest GWA meta-analysis in genetic studies that has ever been performed in East Asian popultions.

    Article  CAS  Google Scholar 

  34. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.

    Article  PubMed  CAS  Google Scholar 

  35. Prokopenko I, McCarthy MI, Lindgren CM. Type 2 diabetes: new genes, new understanding. Trends Genet: TIG. 2008;24(12):613–21.

    Article  PubMed  CAS  Google Scholar 

  36. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.

    Article  PubMed  CAS  Google Scholar 

  37. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–50.

    Article  PubMed  CAS  Google Scholar 

  38. Travers ME, McCarthy MI. Type 2 diabetes and obesity: genomics and the clinic. Hum Genet. 2011;130(1):41–58.

    Article  PubMed  CAS  Google Scholar 

  39. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384(6604):78–80.

    Article  PubMed  CAS  Google Scholar 

  40. Ullrich S, Su J, Ranta F, et al. Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Archiv: Eur J Physiol. 2005;451(3):428–36.

    Article  CAS  Google Scholar 

  41. Kimura M, Hattori T, Matsuda Y, et al. cDNA cloning, characterization, and chromosome mapping of UBE2E2 encoding a human ubiquitin-conjugating E2 enzyme. Cytogenet Cell Genet. 1997;78(2):107–11.

    Article  PubMed  CAS  Google Scholar 

  42. Hartley T, Brumell J, Volchuk A. Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab. 2009;296(1):E1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Kitiphongspattana K, Mathews CE, Leiter EH, Gaskins HR. Proteasome inhibition alters glucose-stimulated (pro)insulin secretion and turnover in pancreatic {beta}-cells. J Biol Chem. 2005;280(16):15727–34.

    Article  PubMed  CAS  Google Scholar 

  44. Kawaguchi M, Minami K, Nagashima K, Seino S. Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion. J Biol Chem. 2006;281(19):13015–20.

    Article  PubMed  CAS  Google Scholar 

  45. Lopez-Avalos MD, Duvivier-Kali VF, Xu G, Bonner-Weir S, Sharma A, Weir GC. Evidence for a role of the ubiquitin-proteasome pathway in pancreatic islets. Diabetes. 2006;55(5):1223–31.

    Article  PubMed  CAS  Google Scholar 

  46. Warton K, Foster NC, Gold WA, Stanley KK. A novel gene family induced by acute inflammation in endothelial cells. Gene. 2004;342(1):85–95.

    Article  PubMed  CAS  Google Scholar 

  47. Ren JM, Li PM, Zhang WR, et al. Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes. 1998;47(3):493–7.

    Article  PubMed  CAS  Google Scholar 

  48. Chagnon MJ, Elchebly M, Uetani N, et al. Altered glucose homeostasis in mice lacking the receptor protein tyrosine phosphatase sigma. Can J Physiol Pharmacol. 2006;84(7):755–63.

    Article  PubMed  CAS  Google Scholar 

  49. Batt J, Asa S, Fladd C, Rotin D. Pituitary, pancreatic and gut neuroendocrine defects in protein tyrosine phosphatase-sigma-deficient mice. Mol Endocrinol. 2002;16(1):155–69.

    Article  PubMed  CAS  Google Scholar 

  50. Zabolotny JM, Kim YB, Peroni OD, et al. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc Natl Acad Sci U S A. 2001;98(9):5187–92.

    Article  PubMed  CAS  Google Scholar 

  51. Wolosker H, Sheth KN, Takahashi M, et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci U S A. 1999;96(2):721–5.

    Article  PubMed  CAS  Google Scholar 

  52. Gonoi T, Mizuno N, Inagaki N, et al. Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem. 1994;269(25):16989–92.

    PubMed  CAS  Google Scholar 

  53. Inagaki N, Kuromi H, Gonoi T, et al. Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J: Off Publ Fed Am Soc Exp Biol. 1995;9(8):686–91.

    CAS  Google Scholar 

  54. Cabrita MA, Christofori G. Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis. 2008;11(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  55. Leeksma OC, Van Achterberg TA, Tsumura Y, et al. Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem / FEBS. 2002;269(10):2546–56.

    Article  CAS  Google Scholar 

  56. Jaggi F, Cabrita MA, Perl AK, Christofori G. Modulation of endocrine pancreas development but not beta-cell carcinogenesis by Sprouty4. Mol Cancer Res: MCR. 2008;6(3):468–82.

    Article  PubMed  Google Scholar 

  57. Bieganowski P, Shilinski K, Tsichlis PN, Brenner C. Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J Biol Chem. 2004;279(43):44656–66.

    Article  PubMed  CAS  Google Scholar 

  58. Kang HS, Kim YS, ZeRuth G, et al. Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol. 2009;29(24):6366–79.

    Article  PubMed  CAS  Google Scholar 

  59. Yang Y, Chang BH, Samson SL, Li MV, Chan L. The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res. 2009;37(8):2529–38.

    Article  PubMed  CAS  Google Scholar 

  60. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7.

    Article  PubMed  CAS  Google Scholar 

  61. Girard C, Duprat F, Terrenoire C, et al. Genomic and functional characteristics of novel human pancreatic 2P domain K(+) channels. Biochem Biophys Res Commun. 2001;282(1):249–56.

    Article  PubMed  CAS  Google Scholar 

  62. Luke MR, Houghton F, Perugini MA, Gleeson PA. The trans-Golgi network GRIP-domain proteins form alpha-helical homodimers. Biochem J. 2005;388(Pt 3):835–41.

    PubMed  CAS  Google Scholar 

  63. Jo W, Endo M, Ishizu K, Nakamura A, Tajima T. A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J Exp Med. 2011;223(2):113–8.

    Article  PubMed  CAS  Google Scholar 

  64. Nakajima H, Yoshiuchi I, Hamaguchi T, et al. Hepatocyte nuclear factor-4 alpha gene mutations in Japanese non-insulin dependent diabetes mellitus (NIDDM) patients. Res Commun Mol Pathol Pharmacol. 1996;94(3):327–30.

    PubMed  CAS  Google Scholar 

  65. Barroso I, Luan J, Wheeler E, et al. Population-specific risk of type 2 diabetes conferred by HNF4A P2 promoter variants: a lesson for replication studies. Diabetes. 2008;57(11):3161–5.

    Article  PubMed  CAS  Google Scholar 

  66. Johansson S, Raeder H, Eide SA, et al. Studies in 3,523 Norwegians and meta-analysis in 11,571 subjects indicate that variants in the hepatocyte nuclear factor 4 alpha (HNF4A) P2 region are associated with type 2 diabetes in Scandinavians. Diabetes. 2007;56(12):3112–7.

    Article  PubMed  CAS  Google Scholar 

  67. Wu Y, Li H, Loos RJ, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57(10):2834–42.

    Article  PubMed  CAS  Google Scholar 

  68. Ng MC, Park KS, Oh B, et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008;57(8):2226–33.

    Article  PubMed  CAS  Google Scholar 

  69. Chang YC, Chang TJ, Jiang YD, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56(10):2631–7.

    Article  PubMed  CAS  Google Scholar 

  70. Ren Q, Han XY, Wang F, et al. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008;51(7):1146–52.

    Article  PubMed  CAS  Google Scholar 

  71. Miyake K, Horikawa Y, Hara K, et al. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects. J Hum Genet. 2008;53(2):174–80.

    Article  PubMed  CAS  Google Scholar 

  72. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.

    PubMed  CAS  Google Scholar 

  73. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? 1962. Bull World Health Org. 1999;77(8):694–703. discussion 692–693.

    PubMed  CAS  Google Scholar 

  74. Southam L, Soranzo N, Montgomery SB, et al. Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants? Diabetologia. 2009;52(9):1846–51.

    Article  PubMed  CAS  Google Scholar 

  75. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  PubMed  CAS  Google Scholar 

  76. Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470(7333):187–97.

    Article  PubMed  CAS  Google Scholar 

  77. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Rev Genet. 2011;12(7):499–510.

    Article  PubMed  CAS  Google Scholar 

  78. Wellcome Trust Case Control C, Craddock N, Hurles ME, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–20.

    Article  PubMed  CAS  Google Scholar 

  79. Grossmann V, Kohlmann A, Klein HU, et al. Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leuk: Off J Leuk Soc Am, Leuk Res Fund, U K. 2011;25(4):671–80.

    Article  CAS  Google Scholar 

  80. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    Article  PubMed  CAS  Google Scholar 

  81. van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med. 2002;136(3):201–9.

    PubMed  Google Scholar 

  82. Schulze MB, Hoffmann K, Manson JE, et al. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr. 2005;82(3):675–84. quiz 714–675.

    PubMed  CAS  Google Scholar 

  83. de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):e261.

    Article  PubMed  Google Scholar 

  84. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241–50.

    Article  PubMed  CAS  Google Scholar 

  85. Fisher E, Boeing H, Fritsche A, Doering F, Joost HG, Schulze MB. Whole-grain consumption and transcription factor-7-like 2 (TCF7L2) rs7903146: gene-diet interaction in modulating type 2 diabetes risk. Br J Nutr. 2009;101(4):478–81.

    Article  PubMed  CAS  Google Scholar 

  86. Qi L, Cornelis MC, Zhang C, van Dam RM, Hu FB. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am J Clin Nutr. 2009;89(5):1453–8.

    Article  PubMed  CAS  Google Scholar 

  87. Kaput J, Ordovas JM, Ferguson L, et al. The case for strategic international alliances to harness nutritional genomics for public and personal health. Br J Nutr. 2005;94(5):623–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Y.S.C. acknowledges support from Hallym University Research Fund 2012 (HRF-201203-008) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2012R1A2A1A03006155). The authors wish to thank Mr. Gwang Sub Kim for technical supports in the preparation of tables.

Disclosure

No potential conflicts relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Shin Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y.S., Lee, JY., Park, K.S. et al. Genetics of Type 2 Diabetes in East Asian Populations. Curr Diab Rep 12, 686–696 (2012). https://doi.org/10.1007/s11892-012-0326-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0326-z

Keywords

Navigation