Skip to main content

Advertisement

Log in

Microvascular Modifications in Diabetic Retinopathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Patients struggling with diabetes are at elevated risks for several sight-threatening diseases, including proliferative diabetic retinopathy (DR). DR manifests in two stages: first, the retinal microvasculature is compromised and capillary degeneration occurs; subsequently, an over-compensatory angiogenic response is initiated. Early changes in the retinal microcirculation include disruptions in blood flow, thickening of basement membrane, eventual loss of mural cells, and the genesis of acellular capillaries. Endothelial apoptosis and capillary dropout lead to a hypoxic inner retina, alterations in growth factors, and upregulation of inflammatory mediators. With disease progression, pathologic angiogenesis generates abnormal preretinal microvessels. Current therapies, which include panretinal photocoagulation and vitrectomy, have remained unaltered for several decades. With several exciting preclinical advances, emergent technologies and innovative cellular targets may offer newfound hope for developing “next-generation” interventional or preventive clinical approaches that will significantly advance current standards of care and clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23:1496–1508. This is a cogent review on DR.

    CAS  Google Scholar 

  2. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55:2401–11.

    Article  PubMed  CAS  Google Scholar 

  3. Kim JH, Kim JH, Jun HO, Yu YS, Kim KW. Inhibition of protein Kinase C delta attenuates blood-retinal barrier breakdown in diabetic retinopathy. Am J Pathol. 2010;176:1517–24.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu Q, Xu X, Xia X, Gu Q, Ho PC. Role of protein Kinase C on the alteration of retinal endothelin-1 in streptozotocin-induced diabetic rats. Exp Eye Res. 2005;81:200–6.

    Article  PubMed  CAS  Google Scholar 

  5. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18:1450–2.

    PubMed  CAS  Google Scholar 

  6. Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ, et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol. 2002;160:501–9.

    Article  PubMed  CAS  Google Scholar 

  7. McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol. 1995;147:642–53.

    PubMed  CAS  Google Scholar 

  8. Barouch FC, Miyamoto K, Allport JR, Fujita K, Bursell SE, Aiello LP, et al. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci. 2000;41:1153–8.

    PubMed  CAS  Google Scholar 

  9. Sone H, Kawakami Y, Okuda Y, Kondo S, Hanatani M, Suzuki H, et al. Vascular endothelial growth factor is induced by long-term high glucose concentration and up-regulated by acute glucose deprivation in cultured bovine retinal pigmented epithelial cells. Biochem Biophys Res Commun. 1996;221:193–8.

    Article  PubMed  CAS  Google Scholar 

  10. Abu el Asrar AM, Maimone D, Morse PH, Gregory S, Reder AT. Cytokines in the vitreous of patients with proliferative diabetic retinopathy. Am J Ophthalmol. 1992;114:731–6.

    PubMed  CAS  Google Scholar 

  11. Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond). 2006;20:1366–9.

    CAS  Google Scholar 

  12. Roy S, Cagliero E, Lorenzi M. Fibronectin overexpression in retinal microvessels of patients with diabetes. Invest Ophthalmol Vis Sci. 1996;37:258–66.

    PubMed  CAS  Google Scholar 

  13. Das A, Frank RN, Zhang NL, Samadani E. Increases in collagen type IV and laminin in galactose-induced retinal capillary basement membrane thickening–prevention by an aldose reductase inhibitor. Exp Eye Res. 1990;50:269–80.

    Article  PubMed  CAS  Google Scholar 

  14. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 2003;419:89–96.

    Article  PubMed  CAS  Google Scholar 

  15. Orlidge A, D’Amore PA. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol. 1987;105:1455–62.

    Article  PubMed  CAS  Google Scholar 

  16. RayChaudhury A, D’Amore PA. Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem. 1991;47:224–9.

    Article  PubMed  CAS  Google Scholar 

  17. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125:1591–8.

    PubMed  CAS  Google Scholar 

  18. Kuwabara T, Cogan DG. Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol. 1963;69:492–502.

    PubMed  CAS  Google Scholar 

  19. Hammes HP. Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res. 2005;37 Suppl 1:39–43.

    Article  PubMed  CAS  Google Scholar 

  20. Li W, Yanoff M, Liu X, Ye X. Retinal capillary pericyte apoptosis in early human diabetic retinopathy. Chin Med J (Engl). 1997;110:659–63.

    CAS  Google Scholar 

  21. Robison Jr WG, McCaleb ML, Feld LG, Michaelis 4th OE, Laver N, Mercandetti M. Degenerated intramural pericytes (‘ghost cells’) in the retinal capillaries of diabetic rats. Curr Eye Res. 1991;10:339–50.

    Article  PubMed  Google Scholar 

  22. • Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, et al. Activation of PKC-Delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009;15:1298–1306. This is an intriguing report describing a platelet-derived growth factor–regulated mechanism controlling pericyte apoptosis following hyperglycemia.

    Article  PubMed  CAS  Google Scholar 

  23. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57:2495–502.

    Article  PubMed  CAS  Google Scholar 

  24. Sato T, Haimovici R, Kao R, Li AF, Roy S. Downregulation of Connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes. 2002;51:1565–71.

    Article  PubMed  CAS  Google Scholar 

  25. Bobbie MW, Roy S, Trudeau K, Munger SJ, Simon AM, Roy S. Reduced Connexin 43 expression and its effect on the development of vascular lesions in retinas of diabetic mice. Invest Ophthalmol Vis Sci. 2010;51:3758–63.

    Article  PubMed  Google Scholar 

  26. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153:543–53.

    Article  PubMed  CAS  Google Scholar 

  27. Murakami T, Suzuma K, Takagi H, Kita M, Ohashi H, Watanabe D, et al. Time-lapse imaging of vitreoretinal angiogenesis originating from both quiescent and mature vessels in a novel ex vivo system. Invest Ophthalmol Vis Sci. 2006;47:5529–36.

    Article  PubMed  Google Scholar 

  28. Kutcher ME, Kolyada AY, Surks HK, Herman IM. Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state. Am J Pathol. 2007;171:693–701.

    Article  PubMed  CAS  Google Scholar 

  29. • Kotecki M, Zeiger AS, Van Vliet KJ, Herman IM. Calpain- and Talin-dependent control of microvascular pericyte contractility and cellular stiffness. Microvasc Res. 2010;80:339–348. Using cell-penetrating calpain inhibitors in conjunction with cytoskeletal protein overexpression, results reveals how pericyte mechanical stiffness is altered downstream of calpain function.

    Article  PubMed  CAS  Google Scholar 

  30. • Lee S, Zeiger A, Maloney J, Maciej K, Van Vliet K, Herman IM. Pericyte actomyosin-mediated contraction at the cell–material interface can modulate the microvascular niche. 2010;22:1–11. This report explores the critical role that the cytoskeleton plays in regulating pericyte biomechanical forces.

  31. Folkman J, Moscona A. Role of cell shape in growth control. Nature. 1978;273:345–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mammoto A, Huang S, Moore K, Oh P, Ingber DE. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem. 2004;279:26323–30.

    Article  PubMed  CAS  Google Scholar 

  33. Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature. 2009;457:1103–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit Aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci USA. 2008;105:11305–10.

    Article  PubMed  CAS  Google Scholar 

  35. Tang J, Mohr S, Du YD, Kern TS. Non-uniform distribution of lesions and biochemical abnormalities within the retina of diabetic humans. Curr Eye Res. 2003;27:7–13.

    Article  PubMed  CAS  Google Scholar 

  36. Kern TS, Engerman RL. Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res. 1995;60:545–9.

    Article  PubMed  CAS  Google Scholar 

  37. Brunner S, Hoellerl F, Schmid-Kubista KE, Zeiler F, Schernthaner G, Binder S, Schernthaner GH. Circulating angiopoietic cells and diabetic retinopathy in T2DM patients with and without macrovascular disease. Invest Ophthalmol Vis Sci. 2011.

  38. Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, et al. Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg. 2005;41:869–80.

    Article  PubMed  Google Scholar 

  39. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol. 2003;264:275–88.

    Article  PubMed  CAS  Google Scholar 

  40. Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS Report Number 9. Ophthalmology. 1991;98:66–785.

    Google Scholar 

  41. The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical Application of Diabetic Retinopathy Study (DRS) Findings, DRS Report Number 8. Ophthalmology. 1981;88:583–600.

    Google Scholar 

  42. Kleiner RC, Elman MJ, Murphy RP, Ferris 3rd FL. Transient severe visual loss after panretinal photocoagulation. Am J Ophthalmol. 1988;106:298–306.

    Article  PubMed  CAS  Google Scholar 

  43. Kleinmann G, Hauser D, Schechtman E, Landa G, Bukelman A, Pollack A. Vitreous hemorrhage in diabetic eyes previously treated with panretinal photocoagulation. Int Ophthalmol. 2008;28:29–34.

    Article  PubMed  Google Scholar 

  44. Lewis H, Schachat AP, Haimann MH, Haller JA, Quinlan P, von Fricken MA, et al. Choroidal neovascularization after laser photocoagulation for diabetic macular edema. Ophthalmology. 1990;97:503–10. discussion 510–1.

    PubMed  CAS  Google Scholar 

  45. Dosso AA, Bonvin ER, Morel Y, Golay A, Assal JP, Leuenberger PM. Risk factors associated with contrast sensitivity loss in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 1996;234:300–5.

    Article  PubMed  CAS  Google Scholar 

  46. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  47. Patz A. Retinal neovascularisation: early contributions of professor michaelson and recent observations. Br J Ophthalmol. 1984;68:42–6.

    Article  PubMed  CAS  Google Scholar 

  48. Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 1993;12:303–24.

    Article  PubMed  CAS  Google Scholar 

  49. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  PubMed  CAS  Google Scholar 

  50. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9.

    Article  PubMed  CAS  Google Scholar 

  51. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246:1309–12.

    Article  PubMed  CAS  Google Scholar 

  52. Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145:574–84.

    PubMed  CAS  Google Scholar 

  53. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.

    Article  PubMed  CAS  Google Scholar 

  54. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328–35.

    Article  PubMed  CAS  Google Scholar 

  55. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113:363–372.e5.

    Article  PubMed  Google Scholar 

  56. Spaide RF, Laud K, Fine HF, Klancnik Jr JM, Meyerle CB, Yannuzzi LA, et al. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2006;26:383–90.

    Article  PubMed  Google Scholar 

  57. • Giuliari GP, Guel DA, Cortez MA, Cortez RT. Selective and pan-blockade agents in the anti-angiogenic treatment of proliferative diabetic retinopathy: a literature summary. Can J Ophthalmol. 2010;45:501–508. This is a comprehensive review of anti-VEGF therapeutics.

    Article  PubMed  Google Scholar 

  58. Ng EW, Adamis AP. Anti-VEGF aptamer (Pegaptanib) therapy for ocular vascular diseases. Ann NY Acad Sci. 2006;1082:151–71.

    Article  PubMed  CAS  Google Scholar 

  59. Cunningham Jr ET, Adamis AP, Altaweel M, Aiello LP, Bressler NM, D’Amico DJ, et al. A phase ii randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology. 2005;112:1747–57.

    Article  PubMed  Google Scholar 

  60. Querques G, Bux AV, Fusco AR, Iaculli C, Delle Noci N. Pegaptanib sodium versus pegaptanib sodium combined with macular laser photocoagulation or laser alone for diabetic macular edema. J Ophthalmol. 2009;2009:672178.

    PubMed  CAS  Google Scholar 

  61. Querques G, Bux AV, Martinelli D, Iaculli C, Noci ND. Intravitreal pegaptanib sodium (Macugen) for diabetic macular oedema. Acta Ophthalmol. 2009;87:623–30.

    Article  PubMed  CAS  Google Scholar 

  62. Adamis AP, Altaweel M, Bressler NM, Cunningham Jr ET, Davis MD, Goldbaum M, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology. 2006;113:23–8.

    Article  PubMed  Google Scholar 

  63. Gonzalez VH, Giuliari GP, Banda RM, Guel DA. Intravitreal injection of pegaptanib sodium for proliferative diabetic retinopathy. Br J Ophthalmol. 2009;93:1474–8.

    Article  PubMed  CAS  Google Scholar 

  64. Mendrinos E, Donati G, Pournaras CJ. Rapid and persistent regression of severe new vessels on the disc in proliferative diabetic retinopathy after a single intravitreal injection of pegaptanib. Acta Ophthalmol. 2009;87:683–4.

    Article  PubMed  Google Scholar 

  65. Hornan D, Edmeades N, Krishnan R, Khan J, Lochhead J. Use of pegaptanib for recurrent and non-clearing vitreous haemorrhage in proliferative diabetic retinopathy. Eye (Lond). 2010;24:1315–9.

    CAS  Google Scholar 

  66. Jorge R, Costa RA, Calucci D, Cintra LP, Scott IU. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE Study). Retina. 2006;26:1006–13.

    Article  PubMed  Google Scholar 

  67. Haritoglou C, Kook D, Neubauer A, Wolf A, Priglinger S, Strauss R, et al. Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema. Retina. 2006;26:999–1005.

    Article  PubMed  Google Scholar 

  68. Arevalo JF, Sanchez JG, Wu L, Maia M, Alezzandrini AA, Brito M, et al. Primary intravitreal bevacizumab for diffuse diabetic macular edema: the Pan-American Collaborative Retina Study Group at 24 months. Ophthalmology. 2009;116:1488–97. 1497.e1.

    Article  PubMed  Google Scholar 

  69. Arevalo JF, Sanchez JG, Lasave AF, Wu L, Maia M, Bonafonte S, et al. Intravitreal bevacizumab (Avastin((R))) for diabetic retinopathy at 24-months: the 2008 Juan Verdaguer-Planas lecture. Curr Diabetes Rev. 2010;6:313–22.

    Article  PubMed  CAS  Google Scholar 

  70. Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology. 2006;113:1695.e1–15.

    Google Scholar 

  71. Kohno R, Hata Y, Mochizuki Y, Arita R, Kawahara S, Kita T, et al. Histopathology of neovascular tissue from eyes with proliferative diabetic retinopathy after intravitreal bevacizumab injection. Am J Ophthalmol. 2010;150:223–229.e1.

    Article  PubMed  CAS  Google Scholar 

  72. Hattori T, Shimada H, Nakashizuka H, Mizutani Y, Mori R, Yuzawa M. Dose of intravitreal bevacizumab (Avastin) used as preoperative adjunct therapy for proliferative diabetic retinopathy. Retina. 2010;30:761–4.

    Article  PubMed  Google Scholar 

  73. Modarres M, Nazari H, Falavarjani KG, Naseripour M, Hashemi M, Parvaresh MM. Intravitreal injection of bevacizumab before vitrectomy for proliferative diabetic retinopathy. Eur J Ophthalmol. 2009;19:848–52.

    PubMed  Google Scholar 

  74. Cho WB, Oh SB, Moon JW, Kim HC. Panretinal photocoagulation combined with intravitreal bevacizumab in high-risk proliferative diabetic retinopathy. Retina. 2009;29:516–22.

    Article  PubMed  Google Scholar 

  75. Wu L, Martinez-Castellanos MA, Quiroz-Mercado H, Arevalo JF, Berrocal MH, Farah ME, et al. Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2008;246:81–7.

    Article  PubMed  CAS  Google Scholar 

  76. Sawada O, Kawamura H, Kakinoki M, Sawada T, Ohji M. Vascular endothelial growth factor in aqueous humor before and after intravitreal injection of bevacizumab in eyes with diabetic retinopathy. Arch Ophthalmol. 2007;125:1363–6.

    Article  PubMed  CAS  Google Scholar 

  77. Chun DW, Heier JS, Topping TM, Duker JS, Bankert JM. A pilot study of multiple intravitreal injections of ranibizumab in patients with center-involving clinically significant diabetic macular edema. Ophthalmology. 2006;113:1706–12.

    Article  PubMed  Google Scholar 

  78. Nguyen QD, Tatlipinar S, Shah SM, Haller JA, Quinlan E, Sung J, et al. Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol. 2006;142:961–9.

    Article  PubMed  CAS  Google Scholar 

  79. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117:1064–1077.e35.

    Article  PubMed  Google Scholar 

  80. Ratner M. Genentech discloses safety concerns over avastin. Nat Biotechnol. 2004;22:1198.

    Article  PubMed  CAS  Google Scholar 

  81. • Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA. An Essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA. 2009;106:18751–18756. In this report, results reveal that retinal pigment epithelium–synthesized VEGF is critical for normal maintenance of the choriocapillaris.

    Article  PubMed  CAS  Google Scholar 

  82. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, et al. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS ONE. 2008;3:e3554.

    Article  PubMed  CAS  Google Scholar 

  83. Magnussen AL, Rennel ES, Hua J, Bevan HS, Beazley Long N, Lehrling C, et al. VEGF-A165b is cytoprotective and antiangiogenic in the retina. Invest Ophthalmol Vis Sci. 2010;51:4273–81.

    Article  PubMed  Google Scholar 

  84. Perrin RM, Konopatskaya O, Qiu Y, Harper S, Bates DO, Churchill AJ. Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia. 2005;48:2422–7.

    Article  PubMed  CAS  Google Scholar 

  85. Konopatskaya O, Churchill AJ, Harper SJ, Bates DO, Gardiner TA. VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Mol Vis. 2006;12:626–32.

    PubMed  CAS  Google Scholar 

  86. Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Dohmen S, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 2002;16:438–40.

    PubMed  CAS  Google Scholar 

  87. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13:868–73.

    Article  PubMed  CAS  Google Scholar 

  88. Campochiaro PA. Molecular targets for retinal vascular diseases. J Cell Physiol. 2007;210:575–81.

    Article  PubMed  CAS  Google Scholar 

  89. Boehm BO, Lang G, Volpert O, Jehle PM, Kurkhaus A, Rosinger S, et al. Low content of the natural ocular anti-angiogenic agent Pigment Epithelium-Derived Factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia. 2003;46:394–400.

    PubMed  CAS  Google Scholar 

  90. Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol. 2004;137:668–74.

    PubMed  CAS  Google Scholar 

  91. Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006;17:167–76.

    Article  PubMed  CAS  Google Scholar 

  92. • Kanthou C, Tozer GM. Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Pathol. 2009;90:284–294. This paper reviews microtubule inhibitors in the treatment of pathologic angiogenesis.

    Article  PubMed  CAS  Google Scholar 

  93. Mabeta P, Pepper MS. A comparative study on the anti-angiogenic effects of DNA-damaging and cytoskeletal-disrupting agents. Angiogenesis. 2009;12:81–90.

    Article  PubMed  CAS  Google Scholar 

  94. Ren X, Dai M, Lin LP, Li PK, Ding J. Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent. Br J Pharmacol. 2009;156:1228–38.

    Article  PubMed  CAS  Google Scholar 

  95. • Caballero S, Yang R, Grant MB, Chaqour B. Selective blockade of cytoskeletal actin remodeling reduces experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2010. This paper demonstrates that inhibition of the actin cytoskeleton represents a potential therapeutic target in choroidal neovascularization.

  96. • Durham JT, Herman IM. Inhibition of angiogenesis in vitro: a central role for beta-actin dependent cytoskeletal remodeling. Microvasc Res. 2009;77:281–288. In this original report, a critical role for isoactin effectors in endothelial migration, morphogenesis, and survival is demonstrated.

    Article  PubMed  CAS  Google Scholar 

  97. • Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res. 2009;77:235–246. This is a cogent review revealing the role of the microvascular pericyte in modulation of capillary structure and function.

    Article  PubMed  CAS  Google Scholar 

  98. Bennett J, Wilson J, Sun D, Forbes B, Maguire A. Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci. 1994;35:2535–42.

    PubMed  CAS  Google Scholar 

  99. Jomary C, Piper TA, Dickson G, Couture LA, Smith AE, Neal MJ, et al. Adenovirus-mediated gene transfer to murine retinal cells in vitro and in vivo. FEBS Lett. 1994;347:117–22.

    Article  PubMed  CAS  Google Scholar 

  100. Hoffman LM, Maguire AM, Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery. Invest Ophthalmol Vis Sci. 1997;38:2224–33.

    PubMed  CAS  Google Scholar 

  101. Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–9.

    PubMed  CAS  Google Scholar 

  102. Mori K, Gehlbach P, Ando A, Wahlin K, Gunther V, McVey D, et al. Intraocular adenoviral vector-mediated gene transfer in proliferative retinopathies. Invest Ophthalmol Vis Sci. 2002;43:1610–5.

    PubMed  Google Scholar 

  103. Biermann V, Volpers C, Hussmann S, Stock A, Kewes H, Schiedner G, et al. Targeting of high-capacity adenoviral vectors. Hum Gene Ther. 2001;12:1757–69.

    Article  PubMed  CAS  Google Scholar 

  104. Wen S, Graf S, Massey PG, Dichek DA. Improved vascular gene transfer with a helper-dependent adenoviral vector. Circulation. 2004;110:1484–91.

    Article  PubMed  CAS  Google Scholar 

  105. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol. 1999;73:5156–61.

    PubMed  CAS  Google Scholar 

  106. Nicklin SA, White SJ, Nicol CG, Von Seggern DJ, Baker AH. In vitro and in vivo characterisation of endothelial cell selective adenoviral vectors. J Gene Med. 2004;6:300–8.

    Article  PubMed  CAS  Google Scholar 

  107. Li P, Liu Y, Maynard J, Tang Y, Deisseroth A. Use of adenoviral vectors to target chemotherapy to tumor vascular endothelial cells suppresses growth of breast cancer and melanoma. Mol Ther. 2010;18:921–8.

    Article  PubMed  CAS  Google Scholar 

  108. Wickham TJ, Segal DM, Roelvink PW, Carrion ME, Lizonova A, Lee GM, et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol. 1996;70:6831–8.

    PubMed  CAS  Google Scholar 

  109. Haisma HJ, Grill J, Curiel DT, Hoogeland S, van Beusechem VW, Pinedo HM, et al. Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther. 2000;7:901–4.

    Article  PubMed  CAS  Google Scholar 

  110. Korn T, Nettelbeck DM, Volkel T, Muller R, Kontermann RE. Recombinant bispecific antibodies for the targeting of adenoviruses to CEA-expressing tumour cells: a comparative analysis of bacterially expressed single-chain diabody and tandem scFv. J Gene Med. 2004;6:642–51.

    Article  PubMed  CAS  Google Scholar 

  111. Nettelbeck DM, Rivera AA, Kupsch J, Dieckmann D, Douglas JT, Kontermann RE, et al. Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int J Cancer. 2004;108:136–45.

    Article  PubMed  CAS  Google Scholar 

  112. • Haisma HJ, Kamps GK, Bouma A, Geel TM, Rots MG, Kariath A, et al. Selective targeting of adenovirus to alphavbeta3 Integrins, VEGFR2 and Tie2 endothelial receptors by angio-adenobodies. Int. J. Pharm. 2010;391:155–161. In this report specific viral transduction of angiogenic endothelial cells can be accomplished via engineered adenobodies.

    Article  PubMed  CAS  Google Scholar 

  113. Hogg RT, Thorpe P, Gerard RD. Retargeting adenoviral vectors to improve gene transfer into tumors. Cancer Gene Ther. 2011;18:275–87.

    Article  PubMed  CAS  Google Scholar 

  114. Chorny M, Fishbein I, Alferiev IS, Nyanguile O, Gaster R, Levy RJ. Adenoviral gene vector tethering to nanoparticle surfaces results in receptor-independent cell entry and increased transgene expression. Mol Ther. 2006;14:382–91.

    Article  PubMed  CAS  Google Scholar 

  115. Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vis Res. 2008;48:319–24.

    Article  PubMed  CAS  Google Scholar 

  116. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE. 2006;1:e38.

    Article  PubMed  Google Scholar 

  117. Balestrieri ML, Napoli C. Novel challenges in exploring peptide ligands and corresponding tissue-specific endothelial receptors. Eur J Cancer. 2007;43:1242–50.

    Article  PubMed  CAS  Google Scholar 

  118. Ruoslahti E, Duza T, Zhang L. Vascular homing peptides with cell-penetrating properties. Curr Pharm Des. 2005;11:3655–60.

    Article  PubMed  CAS  Google Scholar 

  119. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5:1032–8.

    Article  PubMed  CAS  Google Scholar 

  120. Mueller J, Gaertner FC, Blechert B, Janssen KP, Essler M. Targeting of tumor blood vessels: a phage-displayed tumor-homing peptide specifically binds to matrix metalloproteinase-2-processed collagen IV and blocks angiogenesis in vivo. Mol Cancer Res. 2009;7:1078–85.

    Article  PubMed  CAS  Google Scholar 

  121. Hajitou A, Pasqualini R, Arap W. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med. 2006;16:80–8.

    Article  PubMed  CAS  Google Scholar 

  122. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA. 2002;99:7444–9.

    Article  PubMed  CAS  Google Scholar 

  123. • Fogal V, Sugahara KN, Ruoslahti E, Christian S. Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature. Angiogenesis. 2009;12:91–100. This paper describes the usefulness of an anti-NCL antibody, which specifically targets angiogenic endothelial cells.

    Article  PubMed  CAS  Google Scholar 

  124. • Binder C, Cashman SM, Read SP, Kumar-Singh R. Nuclear targeted delivery of macromolecules to retina and cornea. J Gene Med. 2011. This is a report demonstrating that large molecules and DNA transfer into a wide range of cell types can be accomplished via NCL-binding peptide conjugated to nanoparticles.

  125. Kaliberov SA, Kaliberova LN, Stockard CR, Grizzle WE, Buchsbaum DJ. Adenovirus-mediated FLT1-targeted proapoptotic gene therapy of human prostate cancer. Mol Ther. 2004;10:1059–70.

    Article  PubMed  CAS  Google Scholar 

  126. Bu X, Quertermous T. Identification of an endothelial cell-specific regulatory region in the murine endothelin-1 gene. J Biol Chem. 1997;272:32613–22.

    Article  PubMed  CAS  Google Scholar 

  127. Fadel BM, Boutet SC, Quertermous T. Endothelial cell-specific regulation of the murine endothelin-1 gene. J Cardiovasc Pharmacol. 2000;35:S7–11.

    Article  PubMed  CAS  Google Scholar 

  128. Mavria G, Harrington KJ, Marshall CJ, Porter CD. In vivo efficacy of HSV-TK transcriptionally targeted to the tumour vasculature is augmented by combination with cytotoxic chemotherapy. J Gene Med. 2005;7:263–75.

    Article  PubMed  CAS  Google Scholar 

  129. Hodish I, Tal R, Shaish A, Varda-Bloom N, Greenberger S, Rauchwerger A, et al. Systemic administration of radiation-potentiated anti-angiogenic gene therapy against primary and metastatic cancer based on transcriptionally controlled HSV-TK. Cancer Biol Ther. 2009;8:424–32.

    Article  PubMed  CAS  Google Scholar 

  130. Abraham JA, Whang JL, Tumolo A, Mergia A, Friedman J, Gospodarowicz D, et al. Human basic fibroblast growth factor: nucleotide sequence and genomic organization. EMBO J. 1986;5:2523–8.

    PubMed  CAS  Google Scholar 

  131. Yamada H, Yamada E, Kwak N, Ando A, Suzuki A, Esumi N, et al. Cell Injury unmasks a latent proangiogenic phenotype in mice with increased expression of FGF2 in the retina. J Cell Physiol. 2000;185:135–42.

    Article  PubMed  CAS  Google Scholar 

  132. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987;329:630–2.

    Article  PubMed  CAS  Google Scholar 

  133. Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW. Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol. 2005;166:637–44.

    Article  PubMed  CAS  Google Scholar 

  134. Vinores SA, Xiao WH, Shen J, Campochiaro PA. TNF-alpha is critical for ischemia-induced leukostasis, but not retinal neovascularization nor VEGF-induced leakage. J Neuroimmunol. 2007;182:73–9.

    Article  PubMed  CAS  Google Scholar 

  135. Grant MB, Mames RN, Fitzgerald C, Ellis EA, Aboufriekha M, Guy J. Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia. 1993;36:282–91.

    Article  PubMed  CAS  Google Scholar 

  136. Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, Daley D, et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science. 1997;276:1706–9.

    Article  PubMed  CAS  Google Scholar 

  137. Ruberte J, Ayuso E, Navarro M, Carretero A, Nacher V, Haurigot V, et al. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J Clin Invest. 2004;113:1149–57.

    PubMed  CAS  Google Scholar 

  138. Laterra J, Nam M, Rosen E, Rao JS, Lamszus K, Goldberg ID, et al. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest. 1997;76:565–77.

    PubMed  CAS  Google Scholar 

  139. Umeda N, Ozaki H, Hayashi H, Kondo H, Uchida H, Oshima K. Non-paralleled increase of hepatocyte growth factor and vascular endothelial growth factor in the eyes with angiogenic and nonangiogenic fibroproliferation. Ophthalmic Res. 2002;34:43–7.

    Article  PubMed  CAS  Google Scholar 

  140. Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10 T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998;141:805–14.

    Article  PubMed  CAS  Google Scholar 

  141. Seo MS, Okamoto N, Vinores MA, Vinores SA, Hackett SF, Yamada H, et al. Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am J Pathol. 2000;157:995–1005.

    Article  PubMed  CAS  Google Scholar 

  142. Campochiaro PA, Glaser BM. Endothelial cells release a chemoattractant for retinal pigment epithelial cells in vitro. Arch Ophthalmol. 1985;103:1876–80.

    PubMed  CAS  Google Scholar 

  143. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80.

    Article  PubMed  CAS  Google Scholar 

  144. Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA. Antagonists of integrin Alpha v Beta 3 inhibit retinal neovascularization in a murine model. Lab Invest. 1996;75:563–73.

    PubMed  CAS  Google Scholar 

  145. Umeda N, Kachi S, Akiyama H, Zahn G, Vossmeyer D, Stragies R, et al. Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Mol Pharmacol. 2006;69:1820–8.

    Article  PubMed  CAS  Google Scholar 

  146. Auricchio A, Behling KC, Maguire AM, O’Connor EM, Bennett J, Wilson JM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther. 2002;6:490–4.

    Article  PubMed  CAS  Google Scholar 

  147. Takahashi K, Saishin Y, Saishin Y, Silva RL, Oshima Y, Oshima S, et al. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J. 2003;17:896–8.

    PubMed  CAS  Google Scholar 

  148. Lai CC, Wu WC, Chen SL, Xiao X, Tsai TC, Huan SJ, et al. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci. 2001;42:2401–7.

    PubMed  CAS  Google Scholar 

  149. Raisler BJ, Berns KI, Grant MB, Beliaev D, Hauswirth WW. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or kringles 1–3 of angiostatin reduce retinal neovascularization. Proc Natl Acad Sci USA. 2002;99:8909–14.

    Article  PubMed  CAS  Google Scholar 

  150. Igarashi T, Miyake K, Kato K, Watanabe A, Ishizaki M, Ohara K, et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther. 2003;10:219–26.

    Article  PubMed  CAS  Google Scholar 

  151. Takahashi T, Nakamura T, Hayashi A, Kamei M, Nakabayashi M, Okada AA, et al. Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium cells. Am J Ophthalmol. 2000;130:774–81.

    Article  PubMed  CAS  Google Scholar 

  152. Hangai M, Moon YS, Kitaya N, Chan CK, Wu DY, Peters KG, et al. Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Hum Gene Ther. 2001;12:1311–21.

    Article  PubMed  CAS  Google Scholar 

  153. Honda M, Sakamoto T, Ishibashi T, Inomata H, Ueno H. Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGF/flt-1 receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related macular degeneration. Gene Ther. 2000;7:978–85.

    Article  PubMed  CAS  Google Scholar 

  154. Gehlbach P, Demetriades AM, Yamamoto S, Deering T, Xiao WH, Duh EJ, et al. Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier. Hum Gene Ther. 2003;14:129–41.

    Article  PubMed  CAS  Google Scholar 

  155. Lai CM, Brankov M, Zaknich T, Lai YK, Shen WY, Constable IJ, et al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum Gene Ther. 2001;12:1299–310.

    Article  PubMed  CAS  Google Scholar 

  156. Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991;53:411–4.

    Article  PubMed  CAS  Google Scholar 

  157. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2002;43:2428–34.

    PubMed  Google Scholar 

  158. Mori K, Gehlbach P, Yamamoto S, Duh E, Zack DJ, Li Q, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci. 2002;43:1994–2000.

    PubMed  Google Scholar 

  159. Gehlbach P, Demetriades AM, Yamamoto S, Deering T, Duh EJ, Yang HS, et al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther. 2003;10:637–46.

    Article  PubMed  CAS  Google Scholar 

  160. Dvorak HF, Orenstein NS, Carvalho AC, Churchill WH, Dvorak AM, Galli SJ, et al. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol. 1979;122(1):166–74.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tatiana Demidova-Rice for her critical reading of this manuscript. This work was supported by the following grants: NIH T32DK07542 (JTD), NIH EY 15125, 19533 (IMH).

Disclosure

Conflicts of interest: J.T. Durham: none; I.M. Herman: has been a consultant for Healthpoint Biopharmaceuticals, has received grant support from Wound Care Partners, and has received payment from NACCME for continuing medical education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira M. Herman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durham, J.T., Herman, I.M. Microvascular Modifications in Diabetic Retinopathy. Curr Diab Rep 11, 253–264 (2011). https://doi.org/10.1007/s11892-011-0204-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0204-0

Keywords

Navigation