Skip to main content
Log in

Personalizing Locoregional Therapy for Patients with Metastatic Colorectal Cancer

  • Personalized Medicine in Colorectal Cancer (D Cunningham and EC Smyth, Section Editors)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of review

The management of metastatic colorectal liver disease has improved overall survival by multidisciplinary approach utilizing systemic treatment followed by local control of metastatic disease. There has been an evolution of local control therapy which has expanded the new armamentarium for treatment of resectable and unresectable liver disease. The review article will address the various types of locoregional therapy and various indications for its use.

Recent findings

The application of ablative therapies combined with resections has allowed single-stage resection for patients with bilobar disease with excellent safety and efficacy. In patients with unresectable colorectal metastasis to the liver, chemo- and radio-embolization have provided improved survival outcome compared to systemic chemotherapy alone.

Summary

Locoregional therapy for metastatic colorectal liver disease can improve outcome as an adjunctive role in combination with resection or as a sole therapy for patients with unresectable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Leporrier J et al. A population-based study of the incidence, management and prognosis of hepatic metastases from colorectal cancer. Br J Surg. 2006;93(4):465–74.

    Article  CAS  PubMed  Google Scholar 

  2. Akgul O et al. Role of surgery in colorectal cancer liver metastases. World J Gastroenterol. 2014;20(20):6113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salek T et al. Combination of bevacizumab and chemotherapy in the first-line treatment of metastatic colorectal cancer: Slovakian experience. J Clin Oncol. 2011;29(15_suppl):e14152.

    Article  Google Scholar 

  4. •• Xu W et al. Survival benefit and safety of the combinations of FOLFOXIRI +/− bevacizumab versus the combinations of FOLFIRI +/− bevacizumab as first-line treatment for unresectable metastatic colorectal cancer: a meta-analysis. Onco Targets Ther. 2016;9:4833–42. Improved combination chemotherapy regimen can improve overall and progression free survival with acceptable toxicity and should be used in patients with metastatic colorectal cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gong J, Cho M, Fakih M. RAS and BRAF in metastatic colorectal cancer management. J Gastrointest Oncol. 2016;7(5):687–704.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salek T et al. Combination of cetuximab and chemotherapy in the first-line treatment of metastatic colorectal cancer: Slovakian experience. J Clin Oncol. 2011;29(4_suppl):622.

    Article  Google Scholar 

  7. Pietrantonio F, et al. Perioperative triplet chemotherapy and cetuximab in patients with RAS wild type high recurrence risk or borderline resectable colorectal cancer liver metastases. Clin Color Cancer. 2016.

  8. Nagashima M et al. Treatment of oxaliplatin-induced peripheral neuropathy with oxycodone and extension of FOLFOX in patients with advanced colorectal cancer. J Clin Oncol. 2011;29(15_suppl):e19534.

    Article  Google Scholar 

  9. Choti MA et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg. 2002;235(6):759–66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. House MG et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1,600 patients during two decades at a single institution. J Am Coll Surg. 2010;210(5):744–52. 752–5.

    Article  PubMed  Google Scholar 

  11. Andreou A et al. Margin status remains an important determinant of survival after surgical resection of colorectal liver metastases in the era of modern chemotherapy. Ann Surg. 2013;257(6):1079–88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ward E et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  13. Barret M et al. Does nutritional status affect treatment tolerability and efficacy in metastatic colorectal cancer (mCRC) patients? Results of a prospective multicenter study. J Clin Oncol. 2011;29(15_suppl):e14018.

    Article  Google Scholar 

  14. • Fagard K et al. The impact of frailty on postoperative outcomes in individuals aged 65 and over undergoing elective surgery for colorectal cancer: a systematic review. J Geriatr Oncol. 2016;7(6):479–91. Frailty of the patient should be addressed as a potential impact on outcome in patients with resectable metastatic disease.

    Article  PubMed  Google Scholar 

  15. Hemming AW et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg. 2003;237(5):686–91. discussion 691–3.

    PubMed  PubMed Central  Google Scholar 

  16. Bentrem DJ, Dematteo RP, Blumgart LH. Surgical therapy for metastatic disease to the liver. Annu Rev Med. 2005;56:139–56.

    Article  CAS  PubMed  Google Scholar 

  17. Pawlik TM, Schulick RD, Choti MA. Expanding criteria for resectability of colorectal liver metastases. Oncologist. 2008;13(1):51–64.

    Article  PubMed  Google Scholar 

  18. Jawed I et al. Colorectal cancer survival gains and novel treatment regimens: a systematic review and analysis. JAMA Oncol. 2015;1(6):787–95.

    Article  PubMed  Google Scholar 

  19. Wong SL et al. American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol. 2010;28(3):493–508.

    Article  PubMed  Google Scholar 

  20. Fong Y et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999;230(3):309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Cutsem E et al. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii1–9.

    Article  PubMed  Google Scholar 

  22. Nordlinger B et al. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC intergroup trial 40983): a randomised controlled trial. Lancet. 2008;371(9617):1007–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. National Comprehensive Cancer Network. Colon Cancer (Version 2.2016). February 4, 2017; Available from: http://www.nccn.org/professionals/physician_gls/pfd/coloncancer.pdf.

  24. Bilchik AJ et al. Prognostic variables for resection of colorectal cancer hepatic metastases: an evolving paradigm. J Clin Oncol. 2008;26(33):5320–1.

    Article  PubMed  Google Scholar 

  25. Araujo R et al. Comparison between perioperative and postoperative chemotherapy after potentially curative hepatic resection for metastatic colorectal cancer. Ann Surg Oncol. 2013;20(13):4312–21.

    Article  PubMed  Google Scholar 

  26. Jaeck D et al. A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases. Ann Surg. 2004;240(6):1037–49. discussion 1049–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jaeck D et al. One or two-stage hepatectomy combined with portal vein embolization for initially nonresectable colorectal liver metastases. Am J Surg. 2003;185(3):221–9.

    Article  PubMed  Google Scholar 

  28. Abdalla EK et al. Locoregional surgical and interventional therapies for advanced colorectal cancer liver metastases: expert consensus statements. HPB (Oxford). 2013;15(2):119–30.

    Article  Google Scholar 

  29. Martin RC et al. Locoregional surgical and interventional therapies for advanced colorectal liver metastasis: expert consensus statement. HPB (Oxford). 2013;15(2):131–3.

    Article  Google Scholar 

  30. •• Philips P et al. Single-stage resection and microwave ablation for bilobar colorectal liver metastases. Br J Surg. 2016;103(8):1048–54. Single stage resection is safe and feasible for bilobar disease when combined with ablative therapy and minimize morbidity.

    Article  CAS  PubMed  Google Scholar 

  31. Philips P, et al. Safety and advantages of combined resection and microwave ablation in patients with bilobar hepatic malignancies. Int J Hyperth. 2016;1–21.

  32. Lim C et al. Primary tumor versus liver-first strategy in patients with stage IVA colorectal cancer: a propensity score analysis of long-term outcomes and recurrence pattern. Ann Surg Oncol. 2016;23(9):3024–32.

    Article  PubMed  Google Scholar 

  33. Martin R et al. Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastasis. J Am Coll Surg. 2003;197(2):233–41. discussion 241–2.

    Article  PubMed  Google Scholar 

  34. Reddy SK et al. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol. 2007;14(12):3481–91.

    Article  PubMed  Google Scholar 

  35. •• Gani F et al. Patterns of hepatic resections in North America: use of concurrent partial resections and ablations. HPB (Oxford). 2016;18(10):813–20. Combined partial wedge resection and ablative therapy had equivalent outcome as those with partial lobectomy in patients with metastatic colorectal cancer to the liver.

    Article  Google Scholar 

  36. Abbott DE et al. Cost-effectiveness of simultaneous resection and RFA versus 2-stage hepatectomy for bilobar colorectal liver metastases. J Surg Oncol. 2014;109(6):516–20.

    Article  PubMed  Google Scholar 

  37. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  38. Egger ME et al. Assessment of chemotherapy response in colorectal liver metastases in patients undergoing hepatic resection and the correlation to pathologic residual viable tumor. J Am Coll Surg. 2013;216(4):845–56.

    Article  PubMed  Google Scholar 

  39. Akinwande O et al. Comparison of tumor response assessment methods in patients with metastatic colorectal cancer after locoregional therapy. J Surg Oncol. 2016;113(4):443–8.

    Article  PubMed  Google Scholar 

  40. Nielsen K et al. The use of PET-MRI in the follow-up after radiofrequency- and microwave ablation of colorectal liver metastases. BMC Med Imaging. 2014;14:27.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cornelis F et al. 18F-FDG PET/CT is an immediate imaging biomarker of treatment success after liver metastasis ablation. J Nucl Med. 2016;57(7):1052–7.

    Article  PubMed  Google Scholar 

  42. Ahmed M et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. J Vasc Interv Radiol. 2014;25(11):1691–705. e4.

    Article  PubMed  Google Scholar 

  43. Kang TW et al. Terminology and reporting criteria for radiofrequency ablation of tumors in the scientific literature: systematic review of compliance with reporting standards. Korean J Radiol. 2014;15(1):95–107.

    Article  PubMed  PubMed Central  Google Scholar 

  44. •• North DA et al. Microwave ablation for hepatic malignancies: a call for standard reporting and outcomes. Am J Surg. 2014;208(2):284–94. There are wide variation in reporting of outcomes after microwave ablation which prevents accurate comparison of studies that are published. Consistent terminology will help communicate effectively across various centers that perform ablative therapy.

    Article  PubMed  Google Scholar 

  45. Hompes D, Prevoo W, Ruers T. Radiofrequency ablation as a treatment tool for liver metastases of colorectal origin. Cancer Imaging. 2011;11:23–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hur H et al. Comparative study of resection and radiofrequency ablation in the treatment of solitary colorectal liver metastases. Am J Surg. 2009;197(6):728–36.

    Article  PubMed  Google Scholar 

  47. Nielsen K et al. Incidence and treatment of local site recurrences following RFA of colorectal liver metastases. World J Surg. 2013;37(6):1340–7.

    Article  PubMed  Google Scholar 

  48. Sucandy I et al. Long-term survival outcomes of patients undergoing treatment with radiofrequency ablation for hepatocellular carcinoma and metastatic colorectal cancer liver tumors. HPB (Oxford). 2016;18(9):756–63.

    Article  Google Scholar 

  49. Siperstein AE et al. Survival after radiofrequency ablation of colorectal liver metastases: 10-year experience. Ann Surg. 2007;246(4):559–65. discussion 565–7.

    Article  PubMed  Google Scholar 

  50. Kingham TP et al. Patterns of recurrence after ablation of colorectal cancer liver metastases. Ann Surg Oncol. 2012;19(3):834–41.

    Article  PubMed  Google Scholar 

  51. Stang A et al. Impact of systemic therapy and recurrence pattern on survival outcome after radiofrequency ablation for colorectal liver metastases. J Cancer. 2016;7(14):1939–49.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ruers T, Punt C, Coevorden F, Pierie JP, Rinkes I, Ledermann J, Poston G, Bechstein W, Lentz MA, Mauer M, Cutsem E, Lutz M, Nordlinger B. Radiofrequency ablation (RFA) combined with chemotherapy for unresectable colorectal liver metastases (CRC LM): long-term survival results of a randomized phase II study of the EORTC-NCRI CCSG-ALM Intergroup 40004 (CLOCC). In 2015 ASCO Annual Meeting. 2015.

  53. Reuter NP et al. Radiofrequency ablation vs. resection for hepatic colorectal metastasis: therapeutically equivalent? J Gastrointest Surg. 2009;13(3):486–91.

    Article  PubMed  Google Scholar 

  54. Lu DS et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74.

    Article  PubMed  Google Scholar 

  55. van Duijnhoven FH et al. Factors influencing the local failure rate of radiofrequency ablation of colorectal liver metastases. Ann Surg Oncol. 2006;13(5):651–8.

    Article  PubMed  Google Scholar 

  56. Stang A et al. Selection criteria for radiofrequency ablation for colorectal liver metastases in the era of effective systemic therapy: a clinical score based proposal. BMC Cancer. 2014;14:500.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25 Suppl 1:S69–83.

    Article  PubMed  Google Scholar 

  58. Chetboun M et al. Complete necrosis after microwave thermosphere ablation of liver metastases from colorectal cancer, histological proof of efficacy. J Surg Oncol. 2016;113(7):843–4.

    Article  PubMed  Google Scholar 

  59. Martin RC, Scoggins CR, McMasters KM. Microwave hepatic ablation: initial experience of safety and efficacy. J Surg Oncol. 2007;96(6):481–6.

    Article  PubMed  Google Scholar 

  60. Pillai K et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine (Baltimore). 2015;94(9):e580.

    Article  Google Scholar 

  61. Ringe KI et al. Experimental evaluation of the heat sink effect in hepatic microwave ablation. PLoS One. 2015;10(7):e0134301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Martin RC, O.C.R. Microwave ablation and irreversible electroporation, in Blumgart’s surgery of the liver, pancreas and biliary tract, W.R. Jarnagin, Editor. 2016. Elsevier Health Sciences.

  63. Groeschl RT et al. Recurrence after microwave ablation of liver malignancies: a single institution experience. HPB (Oxford). 2013;15(5):365–71.

    Article  Google Scholar 

  64. Wada Y et al. Efficacy of surgical treatment using microwave coagulo-necrotic therapy for unresectable multiple colorectal liver metastases. Onco Targets Ther. 2016;9:937–43.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Karanicolas PJ et al. Long-term outcomes following tumor ablation for treatment of bilateral colorectal liver metastases. JAMA Surg. 2013;148(7):597–601.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leung U et al. Long-term outcomes following microwave ablation for liver malignancies. Br J Surg. 2015;102(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  67. •• Correa-Gallego C et al. A retrospective comparison of microwave ablation vs. radiofrequency ablation for colorectal cancer hepatic metastases. Ann Surg Oncol. 2014;21(13):4278–83. Comparision of microwave ablation versus radiofrequency ablation demonstrated a decreased local recurrence.

  68. Li W et al. Microwave ablation as palliative treatment of locally recurrent colorectal cancer. Indian J Cancer. 2015;52 Suppl 2:e61–3.

    PubMed  Google Scholar 

  69. Francone E, et al. Precoagulation-assisted parenchyma-sparing laparoscopic liver surgery: rationale and surgical technique. Surg Endosc. 2016.

  70. •• Groeschl RT et al. Microwave ablation for hepatic malignancies: a multiinstitutional analysis. Ann Surg. 2014;259(6):1195–200. Local recurrence of a lesion after microwave ablation was correlated with size of the tumor. Tumor greater than 3cm was associated with increased risk of local recurrence after microwave ablation.

    Article  PubMed  Google Scholar 

  71. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol. 2010;17(1):171–8.

    Article  PubMed  Google Scholar 

  72. van Tilborg AA et al. MWA versus RFA for perivascular and peribiliary CRLM: a retrospective patient- and lesion-based analysis of two historical cohorts. Cardiovasc Intervent Radiol. 2016;39(10):1438–46.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Al-Sakere B et al. Tumor ablation with irreversible electroporation. PLoS One. 2007;2(11):e1135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kwon D et al. Borderline and locally advanced pancreatic adenocarcinoma margin accentuation with intraoperative irreversible electroporation. Surgery. 2014;156(4):910–20.

    Article  PubMed  Google Scholar 

  75. Martin 2nd RC et al. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann Surg. 2015;262(3):486–94. discussion 492–4.

    Article  PubMed  Google Scholar 

  76. Bhutiani N et al. Irreversible electroporation enhances delivery of gemcitabine to pancreatic adenocarcinoma. J Surg Oncol. 2016;114(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  77. •• Bhutiani N et al. Evaluation of tolerability and efficacy of irreversible electroporation (IRE) in treatment of Child-Pugh B (7/8) hepatocellular carcinoma (HCC). HPB (Oxford). 2016;18(7):593–9. Irreversible electroporation can be utilized in patients with hepatocellular carcinoma as an additional non-thermal treatment option.

    Article  Google Scholar 

  78. Bond L, et al. Intra-operative navigation of a 3-dimensional needle localization system for precision of irreversible electroporation needles in locally advanced pancreatic cancer. Eur J Surg Oncol. 2016.

  79. Martin 2nd RC et al. Irreversible electroporation in locally advanced pancreatic cancer: a call for standardization of energy delivery. J Surg Oncol. 2016;114(7):865–71.

    Article  PubMed  Google Scholar 

  80. Collins JM. Pharmacologic rationale for regional drug delivery. J Clin Oncol. 1984;2(5):498–504.

    Article  CAS  PubMed  Google Scholar 

  81. Zorzi D et al. Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastases. Br J Surg. 2007;94(3):274–86.

    Article  CAS  PubMed  Google Scholar 

  82. Dhir M, et al. Robotic-assisted placement of an hepatic artery infusion pump and catheter for regional chemotherapy of the liver. Ann Surg Oncol. 2016.

  83. Kemeny NE et al. Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481). J Clin Oncol. 2006;24(9):1395–403.

    Article  CAS  PubMed  Google Scholar 

  84. Levi FA et al. Conversion to resection of liver metastases from colorectal cancer with hepatic artery infusion of combined chemotherapy and systemic cetuximab in multicenter trial OPTILIV. Ann Oncol. 2016;27(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  85. Mocellin S et al. Meta-analysis of hepatic arterial infusion for unresectable liver metastases from colorectal cancer: the end of an era? J Clin Oncol. 2007;25(35):5649–54.

    Article  PubMed  Google Scholar 

  86. Kemeny NE et al. Conversion to resectability using hepatic artery infusion plus systemic chemotherapy for the treatment of unresectable liver metastases from colorectal carcinoma. J Clin Oncol. 2009;27(21):3465–71.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Goi T et al. Hepatic artery infusion therapy is effective for chemotherapy-resistant liver metastatic colorectal cancer. World J Surg Oncol. 2015;13:296.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cercek A et al. Response rates of hepatic arterial infusion pump therapy in patients with metastatic colorectal cancer liver metastases refractory to all standard chemotherapies. J Surg Oncol. 2016;114(6):655–63.

    Article  CAS  PubMed  Google Scholar 

  89. Kemeny NE et al. Updated long-term survival for patients with metastatic colorectal cancer treated with liver resection followed by hepatic arterial infusion and systemic chemotherapy. J Surg Oncol. 2016;113(5):477–84.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Onaitis M et al. Adjuvant hepatic arterial chemotherapy following metastasectomy in patients with isolated liver metastases. Ann Surg. 2003;237(6):782–8. discussion 788–9.

    PubMed  PubMed Central  Google Scholar 

  91. Martin RC, Edwards MJ, McMasters KM. Morbidity of adjuvant hepatic arterial infusion pump chemotherapy in the management of colorectal cancer metastatic to the liver. Am J Surg. 2004;188(6):714–21.

    Article  PubMed  Google Scholar 

  92. Bhutiani N, Martin 2nd RC. Transarterial therapy for colorectal liver metastases. Surg Clin N Am. 2016;96(2):369–91.

    Article  PubMed  Google Scholar 

  93. Gruber-Rouh T et al. Transarterial chemoembolization of unresectable systemic chemotherapy-refractory liver metastases from colorectal cancer: long-term results over a 10-year period. Int J Cancer. 2014;134(5):1225–31.

    Article  CAS  PubMed  Google Scholar 

  94. Ceelen W et al. Initial experience with the use of preoperative transarterial chemoembolization in the treatment of liver metastasis. Acta Chir Belg. 1996;96(1):37–40.

    CAS  PubMed  Google Scholar 

  95. Leichman CG et al. Hepatic chemoembolization combined with systemic infusion of 5-fluorouracil and bolus leucovorin for patients with metastatic colorectal carcinoma: a Southwest Oncology Group pilot trial. Cancer. 1999;86(5):775–81.

    Article  CAS  PubMed  Google Scholar 

  96. Muller H et al. Intra-arterial infusion of 5-fluorouracil plus granulocyte-macrophage colony-stimulating factor (GM-CSF) and chemoembolization with melphalan in the treatment of disseminated colorectal liver metastases. Eur J Surg Oncol. 2001;27(7):652–61.

    Article  CAS  PubMed  Google Scholar 

  97. Salman HS et al. Randomized phase II trial of embolization therapy versus chemoembolization therapy in previously treated patients with colorectal carcinoma metastatic to the liver. Clin Colorectal Cancer. 2002;2(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  98. Albert M et al. Chemoembolization of colorectal liver metastases with cisplatin, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol. Cancer. 2011;117(2):343–52.

    Article  CAS  PubMed  Google Scholar 

  99. Lewis AL et al. Feasibility, safety and pharmacokinetic study of hepatic administration of drug-eluting beads loaded with irinotecan (DEBIRI) followed by intravenous administration of irinotecan in a porcine model. J Mater Sci Mater Med. 2013;24(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  100. •• Jones RP, et al. PARAGON II—a single arm multicentre phase II study of neoadjuvant therapy using irinotecan bead in patients with resectable liver metastases from colorectal cancer. Eur J Surg Oncol. 2016. Single DEBIRI infusion had similar safety and efficacy as traditional systemic chemotherapy for resectable metastatic colorectal disease of the liver.

  101. Bhutiani N, Akinwande O, Martin 2nd RC. Efficacy and toxicity of hepatic intra-arterial drug-eluting (irinotecan) bead (DEBIRI) therapy in irinotecan-refractory unresectable colorectal liver metastases. World J Surg. 2016;40(5):1178–90.

    Article  PubMed  Google Scholar 

  102. Martin 2nd RC et al. Irinotecan drug-eluting beads in the treatment of chemo-naive unresectable colorectal liver metastasis with concomitant systemic fluorouracil and oxaliplatin: results of pharmacokinetics and phase I trial. J Gastrointest Surg. 2012;16(8):1531–8.

    Article  PubMed  Google Scholar 

  103. •• Martin RC et al. Randomized controlled trial of irinotecan drug-eluting beads with simultaneous FOLFOX and bevacizumab for patients with unresectable colorectal liver-limited metastasis. Cancer. 2015;121(20):3649–58. Combination of systemic chemotherapy FOLFOX plus bevacizumab and DEBIRI demonstrated improved overall and progression free survival in patients with unresectable metastatic colorectable liver disease.

    Article  CAS  PubMed  Google Scholar 

  104. Fiorentini G et al. Intra-arterial infusion of irinotecan-loaded drug-eluting beads (DEBIRI) versus intravenous therapy (FOLFIRI) for hepatic metastases from colorectal cancer: final results of a phase III study. Anticancer Res. 2012;32(4):1387–95.

    CAS  PubMed  Google Scholar 

  105. Fiorentini G et al. Locoregional therapy and systemic cetuximab to treat colorectal liver metastases. World J Gastrointest Oncol. 2015;7(6):47–54.

    PubMed  PubMed Central  Google Scholar 

  106. Bilhim T, Pisco JM. The role of nonsteroidal anti-inflammatory drugs (NSAIDs) in the management of the post-embolization symptoms after uterine artery embolization. Pharmaceuticals (Basel). 2010;3(6):1729–38.

    Article  CAS  Google Scholar 

  107. Lencioni R et al. Transarterial treatment of colorectal cancer liver metastases with irinotecan-loaded drug-eluting beads: technical recommendations. J Vasc Interv Radiol. 2014;25(3):365–9.

    Article  PubMed  Google Scholar 

  108. Jones RP et al. Segmental and lobar administration of drug-eluting beads delivering irinotecan leads to tumour destruction: a case–control series. HPB (Oxford). 2013;15(1):71–7.

    Article  Google Scholar 

  109. Mulcahy MF et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer. 2009;115(9):1849–58.

    Article  PubMed  Google Scholar 

  110. van Hazel GA et al. Treatment of fluorouracil-refractory patients with liver metastases from colorectal cancer by using yttrium-90 resin microspheres plus concomitant systemic irinotecan chemotherapy. J Clin Oncol. 2009;27(25):4089–95.

    Article  PubMed  CAS  Google Scholar 

  111. Coldwell D et al. General selection criteria of patients for radioembolization of liver tumors: an international working group report. Am J Clin Oncol. 2011;34(3):337–41.

    Article  PubMed  Google Scholar 

  112. Hong K et al. Salvage therapy for liver-dominant colorectal metastatic adenocarcinoma: comparison between transcatheter arterial chemoembolization versus yttrium-90 radioembolization. J Vasc Interv Radiol. 2009;20(3):360–7.

    Article  PubMed  Google Scholar 

  113. van Hazel GA et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34(15):1723–31.

    Article  PubMed  CAS  Google Scholar 

  114. Dutton SJ et al. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional selective internal radiation therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer. BMC Cancer. 2014;14:497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Townsend AR et al. Selective internal radiation therapy for liver metastases from colorectal cancer. Cancer Treat Rev. 2016;50:148–54.

    Article  PubMed  Google Scholar 

  116. Malik U, Mohiuddin M. External-beam radiotherapy in the management of liver metastases. Semin Oncol. 2002;29(2):196–201.

    Article  PubMed  Google Scholar 

  117. Guha C, Kavanagh BD. Hepatic radiation toxicity: avoidance and amelioration. Semin Radiat Oncol. 2011;21(4):256–63.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hoyer M et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006;45(7):823–30.

    Article  PubMed  Google Scholar 

  119. Blomgren H et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol. 1995;34(6):861–70.

    Article  CAS  PubMed  Google Scholar 

  120. Wulf J et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006;45(7):838–47.

    Article  PubMed  Google Scholar 

  121. Katz AW et al. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol Biol Phys. 2007;67(3):793–8.

    Article  PubMed  Google Scholar 

  122. Yamashita H et al. Local effect of stereotactic body radiotherapy for primary and metastatic liver tumors in 130 Japanese patients. Radiat Oncol. 2014;9:112.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Aitken KL, Hawkins MA. Stereotactic body radiotherapy for liver metastases. Clin Oncol (R Coll Radiol). 2015;27(5):307–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. G. Martin II.

Ethics declarations

Conflict of Interest

Young Hong and Robert C.G. Martin II declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Personalized Medicine in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Martin, R.C.G. Personalizing Locoregional Therapy for Patients with Metastatic Colorectal Cancer. Curr Colorectal Cancer Rep 13, 126–135 (2017). https://doi.org/10.1007/s11888-017-0356-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-017-0356-7

Keywords

Navigation