Skip to main content

Advertisement

Log in

n-3 PUFAs: an Elixir in Prevention of Colorectal Cancer

  • Molecular Biology (S Anant, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Dietary fats especially essential unsaturated fatty acids have been proven to be major determinants in cancer progression and propagation. Epidemiological and experimental data indicates that consumption of higher amounts of n-6 PUFAs with respect to n-3 PUFAs increases the predisposition to various diseases including colon cancer. The chemopreventive effect of n-3 PUFAs has been ascribed to the replacement of n-6 PUFAs in cell membrane-associated lipid rafts. The change in architecture of their lipid rafts influences the behavior of membrane-bound proteins and receptors, and thereby, modulation of various signalling cascades regulating cell proliferation, apoptosis, and other pathways involved in carcinogenesis. Altered signalling pathways can maintain the intestinal homeostasis by hampering the expression of the genes involved in inflammation, angiogenesis, and metastasis of colon cancer. These properties of n-3 PUFAs make them a potential candidate for cancer chemoprevention. In this review, we discuss the molecular mechanism of action of n-3 PUFAs on the chemoprevention of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.

    Article  CAS  PubMed  Google Scholar 

  2. Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  3. Martínez ME. Primary prevention of colorectal cancer: lifestyle, nutrition, exercise. Recent Results Cancer Res. 2005;166:177–211.

    Article  PubMed  Google Scholar 

  4. Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61:135–49.

    Article  CAS  PubMed  Google Scholar 

  5. Lundberg AS, Weinberg RA. Control of the cell cycle and apoptosis. Eur J Cancer. 1999;35(14):1886–94.

    Article  CAS  PubMed  Google Scholar 

  6. Sarotra P, Kansal S, Sandhir R, Agnihotri N. Chemopreventive effect of different ratios of fish oil and corn oil on prognostic markers, DNA damage and cell cycle in colon carcinogenesis. Eur J Cancer Prev. 2012;21(2):147–54. This article shows the mechanism of action of different ratios of fish oil and corn oil in experimentally induced colon cancer.

    Article  CAS  PubMed  Google Scholar 

  7. Slagsvold JE, Pettersen CH, Størvold GL, et al. DHA alters expression of target proteins of cancer therapy in chemotherapy resistant SW620 colon cancer cells. Nutr Cancer. 2010;62(5):611–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kato T, Kolenic N, Pardini RS. Docosahexaenoic acid (DHA), a primary tumor suppressive omega-3 fatty acid, inhibits growth of colorectal cancer independent of p53 mutational status. Nutr Cancer. 2007;58(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  9. Tang FY, Pai MH, Kuo YH, Wang XD. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer. Mol Nutr Food Res. 2012;56(10):1520–31. This article shows that lycopene and fish oil act synergistically as chemopreventive agents against tumor growth and progression in a mouse xenograft model of colon cancer.

    Article  CAS  PubMed  Google Scholar 

  10. Danbara N, Yuri T, Tsujita-Kyutoku M, et al. Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells. Nutr Cancer. 2004;50(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  11. Calviello G, Serini S, Piccioni E. n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem. 2007;14:3059–69.

    Article  CAS  PubMed  Google Scholar 

  12. Jordan A, Stein J. Effect of an omega-3 fatty acid containing lipid emulsion alone and in combination with 5-fluorouracil (5-FU) on growth of the colon cancer cell line Caco-2. Eur J Nutr. 2003;42(6):324–31.

    Article  CAS  PubMed  Google Scholar 

  13. Sala-Vila A, Folkes J, Calder PC. The effect of three lipid emulsions differing in fatty acid composition on growth, apoptosis and cell cycle arrest in the HT-29 colorectal cancer cell line. Clin Nutr. 2010;29(4):519–24.

    Article  CAS  PubMed  Google Scholar 

  14. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–10.

    Article  CAS  PubMed  Google Scholar 

  15. Turk HF, Barhoumi R, Chapkin RS. Alteration of EGFR spatiotemporal dynamics suppresses signal transduction. PLoS One. 2012;7(6):e39682. This article depicts that DHA-induce alteration in both the lateral and subcellular localization of EGFR cause the suppression of EGFR downstream signal transduction in colon cancer.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sasaki T, Hiroki K, Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int. 2013;2013:546318. This article shows the role of EGFR in cancer metastasis.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jiang H, Grenley MO, Bravo MJ, et al. EGFR/ Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell. 2011;8(1):84–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. 1993;260(5104):85–8.

    Article  CAS  PubMed  Google Scholar 

  19. Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13(28):3784–91.

    CAS  PubMed  Google Scholar 

  20. Collett ED, Davidson LA, Fan YY, et al. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol. 2001;280:C1066–75.

    CAS  PubMed  Google Scholar 

  21. Singh J, Rachid H, Reddy BS. Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer. Cancer Res. 1997;15(57):253–8.

    Google Scholar 

  22. Kansal S, Negi AK, Bhatnagar A, Agnihotri N. Ras signaling pathway in the chemopreventive action of different ratios of fish oil and corn oil in experimentally induced colon carcinogenesis. Nutr Cancer. 2012;64(4):559–68. This article shows that fish oil and corn oil affect Ras signalling pathway in a time- and dose-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  23. Ma DW, Seo J, Davidson LA, et al. n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J. 2004;18(9):1040–2.

    CAS  PubMed  Google Scholar 

  24. Liu J, Fukuda K, Xu Z, Ma YQ, et al. Structural basis of phosphoinositide binding to kindlin2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem. 2011;286(50):43334–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Steelman LS, Bertrand FE, McCubrey JA. The complexity of PTEN mutation, marker and potential target for therapeutic intervention. Expert Opin Ther Targets. 2004;8(6):537–50.

    Article  CAS  PubMed  Google Scholar 

  26. Xia S, Lu Y, Wang J, et al. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc Natl Acad Sci U S A. 2006;103(33):12499–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ghosh-Choudhury T, Mandal CC, Woodruff K, et al. Fish oil targets PTEN to regulate NFkappaB for downregulation of antiapoptotic genes in breast tumor growth. Breast Cancer Res Treat. 2009;118(1):213–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Voutsadakis IA. Peroxisome proliferator-activated receptor gamma (PPARgamma) and colorectal carcinogenesis. J Cancer Res Clin Oncol. 2007;133(12):917–28.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagama H. PPARgamma and cancer. Nihon Rinsho. 2010;68(2):323–9.

    PubMed  Google Scholar 

  30. Kansal S, Vaiphei K, Agnihotri N. Alterations in lipid mediated signaling and Wnt/ β-catenin signaling in DMH induced colon cancer on supplementation of fish oil. Biomed Res Int. 2014;2014:832025. This research article shows the protective role of fish oil in deregulated lipid-mediated signaling and Wnt/β-catenin signaling in DMH induced colon cancer.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Allred CD, Talbert DR, Southard RC, et al. PPARgamma1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. J Nutr. 2008;138(2):250–6.

    CAS  PubMed  Google Scholar 

  32. Fan YY, Spencer TE, Wang N, et al. Chemopreventive n-3 fatty acids activate RXRalpha in colonocytes. Carcinogenesis. 2003;24(9):1541–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zand H, Rhimipour A, Bakhshayesh M, et al. Involvement of PPAR-gamma and p53 in DHA-induced apoptosis in Reh cells. Mol Cell Biochem. 2007;304(1–2):71–7.

    Article  CAS  PubMed  Google Scholar 

  34. González-Périz A, Planagumà A, Gronert K, et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17 S-hydroxy-DHA. FASEB J. 2006;20(14):2537–9.

    Article  PubMed  Google Scholar 

  35. Edwards IJ, O'Flaherty JT. Omega-3 fatty acids and PPARgamma in cancer. PPAR Res. 2008;2008:358052.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bull AW, Steffensen KR, Leers J, Rafter JJ. Activation of PPAR gamma in colon tumor cell lines by oxidized metabolites of linoleic acid, endogenous ligands for PPAR gamma. Carcinogenesis. 2003;24:1717–22.

    Article  CAS  PubMed  Google Scholar 

  37. O'Flaherty JT, Rogers LC, Paumi CM, et al. 5-oxo-ETE analogs and the proliferation of cancer cells. Biochim Biophys Acta. 2005;1736(3):228–36.

    Article  PubMed  Google Scholar 

  38. Shiraki T, Kamiya N, Shiki S, et al. α, β-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor γ. J Biol Chem. 2005;280(14):14145–53.

    Article  CAS  PubMed  Google Scholar 

  39. Giam M, Huang DC, Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene. 2008;27 Suppl 1:S128–36.

    Article  CAS  PubMed  Google Scholar 

  40. Basu A, DuBois G, Haldar S. Posttranslational modifications of Bcl2 family members—a potential therapeutic target for human malignancy. Front Biosci. 2006;11:1508–21.

    Article  CAS  PubMed  Google Scholar 

  41. Serini S, Piccioni E, Merendino N, Calviello G. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis. 2009;14(2):135–52.

    Article  CAS  PubMed  Google Scholar 

  42. Sun SN, Jia WD, Chen H, et al. Docosahexaenoic acid (DHA) induces apoptosis in human hepatocellular carcinoma cells. Int J Clin Exp Pathol. 2013;6(2):281–9. This article documents the effect of DHA in downregulation of anti-apoptotic genes such as Bcl-2 and Bim and upregulation of pro-apoptotic genes such as Bax at both mRNA and protein levels.

    PubMed Central  PubMed  Google Scholar 

  43. Diep QN, Touyz RM, Schiffrin EL. Docosahexaenoic acid, a peroxisome-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension. 2000;36(5):851–5.

    Article  CAS  PubMed  Google Scholar 

  44. Giros A, Grzybowski M, Sohn VR, et al. Regulation of colorectal cancer cell apoptosis by the n-3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic. Cancer Prev Res (Phila). 2009;2:732–42.

    Article  CAS  Google Scholar 

  45. Montero J, Mari M, Colell A, et al. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta. 2010;1797(6–7):1217–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nomura K, Imai H, Koumura T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidise inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J. 2000;351(Pt 1):183–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gonzalvez F, Schug ZT, Houtkooper RH, et al. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol. 2008;183(4):681–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Sharma G, Rani I, Kansal S, et al. Alterations in mitochondrial membrane in chemopreventive action of fish oil. Cancer Investig. 2013;31(4):231–40. This article describes the effect of fish oil on the mitochondrial membrane characteristics which lead to increase in apoptosis in both initiation and post-initiation phases in experimental colon carcinogenesis.

    Article  CAS  Google Scholar 

  49. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21(9):781–92.

    Article  CAS  PubMed  Google Scholar 

  50. Hong MY, Chapkin RS, Barhoumi R, et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002;23(11):1919–25.

    Article  CAS  PubMed  Google Scholar 

  51. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15:e493–503. This review summarizes the complex interplay between local immune responses and systemic inflammation and their influence on clinical outcomes.

    Article  PubMed  Google Scholar 

  52. Prasad S, Ravindran J, Aggarwal BB. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336(1–2):25–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Vaiopoulos AG, Athanasoula KC, Papavassiliou AG. NF-kB in colorectal cancer. J Mol Med. 2013;91:1029–37. This review describes the involvement of NF-kB during development and progression of colon cancer.

    Article  CAS  PubMed  Google Scholar 

  54. Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kansal S, Bhatnagar A, Agnihotri N. Fish oil suppresses cell growth and metastatic potential by regulating PTEN and NF-κB signaling in colorectal cancer. PLoS One. 2014;9:e84627. This research article revealed that NF-kB is a molecular target of fish oil and thus inhibit inflammatory signaling so as to inhibit cancer progression.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Duan Y, Li F, Li L, et al. n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs. Br J Nutr. 2014;111:445–51. This article suggests that optimal n-6:n-3 PUFA ratios of 1:1 and 5:1 exerted beneficial effects on lipid metabolism and inflammatory system of the body.

    Article  CAS  PubMed  Google Scholar 

  57. Jia Q, Lupton JR, Smith R, et al. Reduced colitis-associated colon cancer in fat-1 (n-3 fatty acid desaturase) transgenic mice. Cancer Res. 2009;68:3985–91.

    Article  Google Scholar 

  58. Nowak J, Weylandt KH, Habbel P, et al. Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids. Carcinogenesis. 2007;28:1991–5.

    Article  CAS  PubMed  Google Scholar 

  59. Chapkin RS, Davidson LA, Ly L, et al. Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J Nutr. 2007;137:200–4.

    Google Scholar 

  60. Ishida T, Yoshida M, Arita M, et al. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium induced colitis. Inflamm Bowel Dis. 2010;16:87–95.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Nieto N, Torres I, Ríos A, Gil A. Biochemical and molecular action of nutrients dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr. 2002;2:11–9.

    Google Scholar 

  62. Arita M, Yoshida M, Hong S, et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis. PNAS. 2005;102:7671–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Gewirtz AT, Collier-Hyams LS, Young AN, et al. Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol. 2002;168:5260–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kure I, Nishiumi S, Nishitani Y, et al. Lipoxin A4 reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor- κB activation. J Pharmacol Exp Ther. 2010;332:541–8.

    Article  CAS  PubMed  Google Scholar 

  66. Oklu R, Walker TG, Wicky S, Hesketh R. Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol. 2010;21(12):1791–805.

    Article  PubMed  Google Scholar 

  67. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65(10):3967–79.

    Article  CAS  PubMed  Google Scholar 

  68. Calviello G, Di Nicuolo F, Gragnoli S, et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis. 2004;25(12):2303–10.

    Article  CAS  PubMed  Google Scholar 

  69. Mukutmoni-Norris M, Hubbard NE, Erickson KL. Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil. Cancer Lett. 2000;150:101–9.

    Article  CAS  PubMed  Google Scholar 

  70. Terano T, Shiina T, Tamura Y. Eicosapentaenoic acid suppressed the proliferation of vascular smooth muscle cells through modulation of various steps of growth signals. Lipids. 1996;31(Suppl):S301–4.

    Article  CAS  PubMed  Google Scholar 

  71. Hunter KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Breast Cancer Res. 2008;10 Suppl 1:S2.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Gutt CN, Brinkmann L, Mehrabi A, et al. Dietary omega-3-polyunsaturated fatty acids prevent the development of metastases of colon carcinoma in rat liver. Eur J Nutr. 2007;46(5):279–85.

    Article  CAS  PubMed  Google Scholar 

  73. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34.

    Article  CAS  PubMed  Google Scholar 

  74. Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene. 2003;22(42):6524–36.

    Article  CAS  PubMed  Google Scholar 

  75. Ganguly KK, Pal S, Moulik S, Chatterjee A. Integrins and metastasis. Cell Adhes Migr. 2013;7(3):251–61. This review explains the importance of integrins in regulating metastasis.

    Article  Google Scholar 

  76. Nikkola J, Vihinen P, Vuoristo MS, et al. High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin Cancer Res. 2005;11(14):5158–66.

    Article  CAS  PubMed  Google Scholar 

  77. Yu G, Herazo-Maya JD, Nukui T, et al. Matrix metalloproteinase-19 promotes metastatic behavior in vitro and is associated with increased mortality in non-small cell lung cancer. Am J Respir Crit Care Med. 2014;190(7):780–90. This research article explains the role of MMP-19 in the development and progression of NSCLC.

    Article  CAS  PubMed  Google Scholar 

  78. Griffini P, Fehres O, Klieverik L, et al. Dietary omega-3 polyunsaturated fatty acids promote colon carcinoma metastasis in rat liver. Cancer Res. 1998;58(15):3312–9.

    CAS  PubMed  Google Scholar 

  79. Iwamoto S, Senzaki H, Kiyozuka Y, et al. Effects of fatty acids on liver metastasis of ACL-15 rat colon cancer cells. Nutr Cancer. 1998;31(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  80. Kontogiannea M, Gupta A, Ntanios F, et al. Omega-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells. J Surg Res. 2000;92(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  81. Hawcroft G, Volpato M, Marston G, et al. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid inhibits mouse MC-26 colorectal cancer cell liver metastasis via inhibition of PGE2-dependent cell motility. Br J Pharmacol. 2012;166(5):1724–37. This article explains the inhibitory effect of EPA on CRC liver metastasis by influencing PGE2-PGE3 switch.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Taguchi A, Kawana K, Tomio K, et al. Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One. 2014;9(2):e89605. This article reports that omega-3 PUFAs suppress MMP-9 expression and tumor angiogenesis.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Signori C, DuBrock C, Richie JP. Administration of omega-3 fatty acids and raloxifene to women at high risk of breast cancer: interim feasibility and biomarkers analysis from a clinical trial. Eur J Clin Nutr. 2012;66(8):878–84. This article reports the efficacy of n-3 PUFAs as adjuvant in reducing breast cancer risk.

    Article  CAS  PubMed  Google Scholar 

  84. Anti M, Armelao F, Marra G, et al. Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology. 1994;107(6):1709–18.

    CAS  PubMed  Google Scholar 

  85. Cockbain AJ, Volpato M, Race AD, et al. Anticolorectal cancer activity of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid. Gut. 2014;63(11):1760–8. This article shows the anti-angiogenic effects of EPA on CRC patients undergoing liver surgery.

    Article  CAS  PubMed  Google Scholar 

  86. Murphy RA, Mourtzakis M, Chu QS, et al. Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer. 2011;117(16):3774–80.

    Article  CAS  PubMed  Google Scholar 

  87. van der Meij BS, Languis JA, Spreeuwenberg MD, et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. Eur J Clin Nutr. 2012;66(3):399–404. This article reports that there is an improvement in quality of life and cognitive and physical function in cancer patients undergoing chemotherapy.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Elia M, Van Bokhorst-de van der Schueren MA, Garvey J, et al. Enteral (oral or tube administration) nutritional support and eicosapentaenoic acid in patients with cancer: a systemic review. Int J Oncol. 2006;28(1):5–23.

    CAS  PubMed  Google Scholar 

  89. Weed HG, Ferguson ML, Gaff RL, et al. Lean body mass gain in patients with head and neck squamous cell cancer treated perioperatively with a protein- and energy-dense nutritional supplement containing eicosapentaenoic acid. Head Neck. 2011;33(7):1027–33.

    Article  PubMed  Google Scholar 

  90. Vaughan VC, Hassing M-R, Lewandowski PA. Marine polyunsaturated fatty acids and cancer therapy. Br J Cancer. 2013;108(3):486–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Renuka Malik, Sandeep Kumar, Bhoomika Sharma, Prerna Sharma, and Navneet Agnihotri declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Agnihotri.

Additional information

This article is part of the Topical Collection on Molecular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renuka, Kumar, S., Sharma, B. et al. n-3 PUFAs: an Elixir in Prevention of Colorectal Cancer. Curr Colorectal Cancer Rep 11, 141–149 (2015). https://doi.org/10.1007/s11888-015-0268-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-015-0268-3

Keywords

Navigation