Skip to main content

Advertisement

Log in

Targeting Cancer Stem Cells by Phytochemicals: a Multimodal Approach to Colorectal Cancer

  • Molecular Biology (S Anant, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Cancer stem cells (CSCs) exist within a tumor as a rare subpopulation, with the capacity of self-renewal and the ability to differentiate into heterogeneous population of cancer cells. CSCs are increasingly being implicated in tumor recurrence thereby further augmenting the menace of the malignant disease. Characterization of CSCs has unearthed their pivotal role in all the hallmarks of cancer including tumorigenesis, angiogenesis, metastasis and drug resistance, thereby designating cancer as a “stem cell disease.” Here, we discuss the limitations of current therapeutic strategies that spare CSCs thereby failing to achieve complete cure of colorectal cancer, and elucidate the role of multimodal CSC-targeted treatment strategies, using natural phytochemicals and their derivatives. With emerging evidences identifying the molecular targets of phytochemicals in colorectal CSCs, development of better therapeutic strategies uprooting CSCs, the root of all evils, can be envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  Google Scholar 

  2. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, et al. Colorectal cancer. Lancet. 2010;375:1030–47.

    PubMed  Google Scholar 

  3. Hugen N, Verhoeven RH, Radema SA, de Hingh IH, Pruijt JF, Nagtegaal ID, et al. Prognosis and value of adjuvant chemotherapy in stage III mucinous colorectal carcinoma. Ann Oncol. 2013;24:2819–24.

    PubMed  CAS  Google Scholar 

  4. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490–502.

    PubMed  Google Scholar 

  5. Lee JW, Han JB, Kim SS, Seong S. Metastatic colorectal cancer treated with herbal pharmacopuncture during FOLFIRI chemotherapy: a case report. Case Rep Oncol. 2014;7:357–61.

    PubMed  PubMed Central  Google Scholar 

  6. Okamoto OK. Cancer stem cell genomics: the quest for early markers of malignant progression. Expert Rev Mol Diagn. 2009;9:545–54.

    PubMed  CAS  Google Scholar 

  7. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    PubMed  CAS  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    PubMed  CAS  Google Scholar 

  10. Kleinsmith LJ, Pierce Jr GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.

    PubMed  CAS  Google Scholar 

  11. Aguilar-Gallardo C, Simón C. Cells, stem cells, and cancer stem cells. Semin Reprod Med. 2013;31:5–13. In this review the authors have designated cancer as a “stem cell disease” since cancer stem cells, which share numerous features with normal stem cells including hallmark properties such as self-renewal and differentiation, are considered as the root cause of carcinogenesis.

    PubMed  CAS  Google Scholar 

  12. Di Franco S, Mancuso P, Benfante A, Spina M, Iovino F, Dieli F, et al. Colon cancer stem cells: bench-to-bedside-new therapeutical approaches in clinical oncology for disease breakdown. Cancers (Basel). 2011;3:1957–74.

    Google Scholar 

  13. Horst D, Scheel SK, Liebmann S, Neumann J, Maatz S, Kirchner T, et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol. 2009;219:427–34.

    PubMed  CAS  Google Scholar 

  14. Pohl A, El-Khoueiry A, Yang D, Zhang W, Lurje G, Ning Y, et al. Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. Pharmacogenomics J. 2013;13:173–80. The authors show that CD133 is an independent prognostic marker for metastatic colorectal cancer treated with bevacizumab-based chemotherapy, thereby highlighting the importance of this marker in predicting the progression free survival (PFS) of colorectal cancer patients.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133 metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118:2111–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. LaBarge MA, Bissell MJ. Is CD133 a marker of metastatic colon cancer stem cells? J Clin Invest. 2008;118:2021–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Pilati P, Mocellin S, Bertazza L, Galdi F, Briarava M, Mammano E, et al. Prognostic value of putative circulating cancer stem cells in patients undergoing hepatic resection for colorectal liver metastasis. Ann Surg Oncol. 2012;19:402–8.

    PubMed  Google Scholar 

  18. May R, Sureban SM, Hoang N, Riehl TE, Lightfoot SA, Ramanujam R, et al. Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells. 2009;27:2571–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest. 2014;124:1283–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98–103.

    PubMed  CAS  Google Scholar 

  21. Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget. 2010;1:387–95.

    PubMed  PubMed Central  Google Scholar 

  22. Chen S, Hou JH, Feng XY, Zhang XS, Zhou ZW, Yun JP, et al. Clinicopathologic significance of putative stem cell marker, CD44 and CD133, in human gastric carcinoma. J Surg Oncol. 2013;107:799–806. The authors show that treatment of chemotherapeutic drugs, 5-FU or oxaliplatin on colorectal cancer cell lines increases subpopulation of CSCs with CD133+/CD44+ phenotype, thus signifying chemoresistant properties of colorectal CSCs.

    PubMed  CAS  Google Scholar 

  23. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren 2nd G, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69:1951–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Fábián Á, Vereb G, Szöllősi J. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry A. 2013;83:62–71.

    PubMed  Google Scholar 

  25. Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–74.

    PubMed  CAS  Google Scholar 

  26. Wu D, Hamilton B, Martin C, Gao Y, Ye M, Yao S. Generation of induced pluripotent stem cells by reprogramming human fibroblasts with the stemgent human TF lentivirus set. J Vis Exp. 2009. doi:10.3791/1553.

    Google Scholar 

  27. Miyamoto S, Rosenberg DW. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 2011;102:1938–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Norris L, Karmokar A, Howells L, Steward WP, Gescher A, Brown K. The role of cancer stem cells in the anti-carcinogenicity of curcumin. Mol Nutr Food Res. 2013;57:1630–7.

    PubMed  CAS  Google Scholar 

  29. Chang CJ, Chien Y, Lu KH, Chang SC, Chou YC, Huang CS, et al. Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem Biophys Res Commun. 2011;415:245–51.

    PubMed  CAS  Google Scholar 

  30. Neumann J, Bahr F, Horst D, Kriegl L, Engel J, Luque RM, et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer. 2011;11:518.

    PubMed  PubMed Central  Google Scholar 

  31. Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res. 2008;68:4258–68.

    PubMed  CAS  Google Scholar 

  32. Korkaya H, Wicha MS. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs. 2007;21:299–310.

    PubMed  CAS  Google Scholar 

  33. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150–8.

    PubMed  CAS  Google Scholar 

  34. Hirsch D, Barker N, McNeil N, Hu Y, Camps J, McKinnon K, et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis. 2014;35:849–58.

    PubMed  CAS  Google Scholar 

  35. Neradugomma NK, Subramaniam D, Tawfik OW, Goffin V, Kumar TR, Jensen RA, et al. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis. 2014;35:795–806.

    PubMed  CAS  Google Scholar 

  36. Arcaroli JJ, Quackenbush KS, Purkey A, Powell RW, Pitts TM, Bagby S, et al. Tumours with elevated levels of the Notch and Wnt pathways exhibit efficacy to PF-03084014, a γ-secretase inhibitor, in a preclinical colorectal explant model. Br J Cancer. 2013;109:667–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Calotropin: a cardenolide from Calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. Chembiochem. 2014;15:872–8.

    PubMed  CAS  Google Scholar 

  38. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.

    PubMed  CAS  Google Scholar 

  39. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. 2012;31:753–61.

    PubMed  CAS  Google Scholar 

  40. Qu Y, Zhang L, Rong Z, He T, Zhang S. Number of glioma polyploid giant cancer cells (PGCCs) associated with vasculogenic mimicry formation and tumor grade in human glioma. J Exp Clin Cancer Res. 2013;32:75.

    PubMed  PubMed Central  Google Scholar 

  41. Yang MY, Lee HT, Chen CM, Shen CC, Ma HI. Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. Int J Mol Sci. 2014;15:11013–29.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Bikfalvi A, Moenner M, Javerzat S, North S, Hagedorn M. Inhibition of angiogenesis and the angiogenesis/invasion shift. Biochem Soc Trans. 2011;39:1560–4.

    PubMed  CAS  Google Scholar 

  43. Sullivan LA, Brekken RA. The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs. 2010;2:165–75.

    PubMed  PubMed Central  Google Scholar 

  44. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478:399–403. The authors demonstrate dual role of VEGF secreted from cancer stem cells, in stimulating both stemness and self-renewal of skin cancers by an autocrine loop thereby indicating the contribution of VEGF in CSCs maintenance.

    PubMed  CAS  Google Scholar 

  45. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    PubMed  CAS  Google Scholar 

  46. Moyret-Lalle C, Ruiz E, Puisieux A. Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeons” of breast cancer. World J Clin Oncol. 2014;5:311–22. The authors discuss mechanistic regulation of embryonic signalling pathways with special focus on EMT-activating transcription factors in cancer progression, thus deciphering the mechanisms that may lead to the design of cancer therapies.

    PubMed  PubMed Central  Google Scholar 

  47. Garg M. Epithelial-mesenchymal transition-activating transcription factors—multifunctional regulators in cancer. World J Stem Cells. 2013;5:188–95. The authors discuss the mechanistic regulation of embryonic signalling pathways with special focus on EMT-activating transcription factors in cancer progression thus delineating the mechanisms that may lead to the design of novel cancer therapies.

    PubMed  PubMed Central  Google Scholar 

  48. Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22:396–403.

    PubMed  CAS  Google Scholar 

  49. Cojoc M, Mäbert K, Muders MH, Dubr. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2014.

  50. Lin L, Fuchs J, Li C, Olson V, Bekaii-Saab T, Lin J. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells. Biochem Biophys Res Commun. 2011;416:246–51.

    PubMed  CAS  Google Scholar 

  51. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Yi H, Cho HJ, Cho SM, Jo K, Park JA, Kim NH, et al. Blockade of interleukin-6 receptor suppresses the proliferation of H460 lung cancer stem cells. Int J Oncol. 2012;41:310–6.

    PubMed  CAS  Google Scholar 

  54. Qiu S, Jia Y, Xing H, Yu T, Yu J, Yu P, et al. N-Cadherin and Tie2 positive CD34+CD38CD123+ leukemic stem cell populations can develop acute myeloid leukemia more effectively in NOD/SCID mice. Leuk Res. 2014;38:632–7.

    PubMed  CAS  Google Scholar 

  55. Landowski TH, Gard J, Pond E, Pond GD, Nagle RB, Geffre CP, et al. Targeting integrin α6 stimulates curative-type bone metastasis lesions in a xenograft model. Mol Cancer Ther. 2014;13:1558–66.

    PubMed  CAS  Google Scholar 

  56. Gu W, Yeo E, McMillan N, Yu C. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther. 2011;18:897–905.

    PubMed  CAS  Google Scholar 

  57. Kang MJ, Kim HP, Lee KS, Yoo YD, Kwon YT, Kim KM, et al. Proteomic analysis reveals that CD147/EMMPRIN confers chemoresistance in cancer stem cell-like cells. Proteomics. 2013;13:1714–25.

    PubMed  CAS  Google Scholar 

  58. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature. 2008;452:650–3.

    PubMed  CAS  Google Scholar 

  59. Altaner C. Glioblastoma and stem cells. Neoplasma. 2008;55:369–74.

    PubMed  CAS  Google Scholar 

  60. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–59. The authors identify salinomycin as a cancer stem cell targeting drug by employing high throughput screening approach that reduces cancer stem cell by >100 fold magnitude relative to commonly used chemotherapeutic drugs.

    PubMed  CAS  Google Scholar 

  61. Honjo S, Ajani JA, Scott AW, Chen Q, Skinner HD, Stroehlein J, et al. Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol. 2014;45:567–74. The present study highlights the chemo-sensitizing effect of metformin towards 5-FU of breast cancer stem cells by targeting the stemness responsive genes and mTOR signaling pathways.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Takehara M, Hoshino T, Namba T, Yamakawa N, Mizushima T. Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochem Pharmacol. 2011;81:1124–35. The authors discover that administration of acetaminophen stimulates induction of differentiation in breast cancer stem cells by inhibition of Wnt/β-catenin canonical pathway in vitro and also inhibits the growth of tumor xenograft in nude mice.

    PubMed  CAS  Google Scholar 

  63. Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138:2151–62.

    PubMed  CAS  Google Scholar 

  64. Catalano V, Gaggianesi M, Spina V, Iovino F, Dieli F, Stassi G, et al. Colorectal cancer stem cells and cell death. Cancers (Basel). 2011;3:1929–46.

    CAS  Google Scholar 

  65. Wargovich MJ. Nutrition and cancer: the herbal revolution. Curr Opin Clin Nutr Metab Care. 1999;2:421–4.

    PubMed  CAS  Google Scholar 

  66. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger AG. Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br J Pharmacol. 2012;167:279–97.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Patel BB, Majumdar AP. Synergistic role of curcumin with current therapeutics in colorectal cancer: minireview. Nutr Cancer. 2009;61(6):842–6.

    PubMed  CAS  Google Scholar 

  68. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    PubMed  CAS  Google Scholar 

  69. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    PubMed  CAS  Google Scholar 

  70. Subramaniam D, Ramalingam S, Houchen CW, Anant S. Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Rev Med Chem. 2010;10:359–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, et al. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS ONE. 2011;6:e16530.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Russo M, Spagnuolo C, Tedesco I, Russo GL. Phytochemicals in cancer prevention and therapy: truth or dare? Toxins (Basel). 2010;2:517–51.

    CAS  Google Scholar 

  73. Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10:511–45.

    PubMed  CAS  Google Scholar 

  74. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14:4491–9.

    PubMed  CAS  Google Scholar 

  75. Adhikary A, Chakraborty S, Mazumdar M, Ghosh S, Mukherjee S, Manna A, Mohanty S, Nakka KK, Joshi S, De A, Chattopadhyay S, Sa G, Das T. Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of Slug transcription and inhibition of E-cadherin degradation: dual role of SMAR1 in breast cancer cells. J Biol Chem. 2014.

  76. Chakraborty S, Adhikary A, Mazumdar M, Mukherjee S, Bhattacharjee P, Guha D, et al. Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS One. 2014;9:e99743.

    PubMed  PubMed Central  Google Scholar 

  77. Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, et al. Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett. 2014;588:549–59.

    PubMed  CAS  Google Scholar 

  78. Saha S, Bhattacharjee P, Mukherjee S, Mazumdar M, Chakraborty S, Khurana A, et al. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells. Oncol Rep. 2014;31:1589–98.

    PubMed  CAS  Google Scholar 

  79. Hossain DM, Panda AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, et al. FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity. 2013;39:1057–69.

    PubMed  CAS  Google Scholar 

  80. Mazumdar M, Adhikary A, Chakraborty S, Mukherjee S, Manna A, Mohanty S, et al. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt/Bad pathway and death receptor-independent p38-MAPK/caspase-8 pathway. Apoptosis. 2013;18:589–604.

    PubMed  CAS  Google Scholar 

  81. Kim YM, Kim IH, Nam TJ. Capsosiphon fulvescens glycoprotein inhibits AGS gastric cancer cell proliferation by downregulating Wnt-1 signaling. Int J Oncol. 2013;43:1395–401.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J, et al. Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (−)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res. 2005;65:10623–31.

    PubMed  CAS  Google Scholar 

  83. Jeong CH, Bode AM, Pugliese A, Cho YY, Kim HG, Shim JH, et al. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 2009;69:5584–91.

    PubMed  CAS  Google Scholar 

  84. Pálmer HG, González-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol. 2001;154:369–87.

    PubMed  PubMed Central  Google Scholar 

  85. Temraz S, Mukherji D, Shamseddine A. Potential targets for colorectal cancer prevention. Int J Mol Sci. 2013;14:17279–303. In this review authors have focused on the efficacy of curcumin in combination with resveratrol in inhibiting the growth of colorectal tumors by attenuation of proliferative pathways and stimulation of apoptotic pathways thereby signifying the efficiency of phytochemicals in cancer regression.

    PubMed  PubMed Central  Google Scholar 

  86. Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol. 2002;1:10.

    PubMed  PubMed Central  Google Scholar 

  87. Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6:1276–82.

    PubMed  CAS  Google Scholar 

  88. Stubbins RE, Hakeem A, Núñez NP. Using components of the vitamin D pathway to prevent and treat colon cancer. Nutr Rev. 2012;70:721–9.

    PubMed  PubMed Central  Google Scholar 

  89. Liu WH, Chang LS. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway. J Cell Physiol. 2010;224:775–85.

    PubMed  CAS  Google Scholar 

  90. Kang JH, Han IH, Sung MK, Yoo H, Kim YG, Kim JS, et al. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP-2. Cancer Lett. 2008;261:84–92.

    PubMed  CAS  Google Scholar 

  91. Su CC, Chen GW, Lin JG, Wu LT, Chung JG. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res. 2006;26:1281–8.

    PubMed  CAS  Google Scholar 

  92. Nautiyal J, Kanwar SS, Yu Y, Majumdar AP. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J Mol Signal. 2011;6:7.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Patel BB, Gupta D, Elliott AA, Sengupta V, Yu Y, Majumdar AP. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Res. 2010;30:319–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71:1397–421.

    PubMed  CAS  Google Scholar 

  95. Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett. 2007;255:170–81.

    PubMed  CAS  Google Scholar 

  96. Limtrakul P. Curcumin as chemosensitizer. Adv Exp Med Biol. 2007;595:269–300.

    PubMed  Google Scholar 

  97. Chauhan DP. Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des. 2002;8:1695–706.

    PubMed  CAS  Google Scholar 

  98. Park EY, Wilder ET, Lane MA. Retinol inhibits the invasion of retinoic acid-resistant colon cancer cells in vitro and decreases matrix metalloproteinase mRNA, protein, and activity levels. Nutr Cancer. 2007;57:66–77.

    PubMed  CAS  Google Scholar 

  99. Chen HJ, Hsu LS, Shia YT, Lin MW, Lin CM. The β-catenin/TCF complex as a novel target of resveratrol in the Wnt/β-catenin signaling pathway. Biochem Pharmacol. 2012;84:1143–53.

    PubMed  CAS  Google Scholar 

  100. Shibata H, Yamakoshi H, Sato A, Ohori H, Kakudo Y, Kudo C, et al. Newly synthesized curcumin analog has improved potential to prevent colorectal carcinogenesis in vivo. Cancer Sci. 2009;100:956–60.

    PubMed  CAS  Google Scholar 

  101. Lin L, Liu Y, Li H, Li PK, Fuchs J, Shibata H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer. 2011;105:212–20. In this study authors have disclosed STAT3 as a novel therapeutic target in colon cancer stem cells. Moreover, they show that GO-Y030, a newly developed curcumin analogue, effectively inhibited ALDH+/CD133+ colon cancer stem cells in mouse model by inhibiting STAT3 phosphorylation, tumorosphere formation thereby thereby authenticating the competence of phytochemicals in cancer regression.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Ryu MJ, Cho M, Song JY, Yun YS, Choi IW, Kim DE, et al. Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun. 2008;377:1304–8.

    PubMed  CAS  Google Scholar 

  103. Arnar DO, Cai JJ, Lee HC, Martins JB. Electrophysiologic effects of civamide (zucapsaicin) on canine cardiac tissue in vivo and in vitro. J Cardiovasc Pharmacol. 1998;32:875–83.

    PubMed  CAS  Google Scholar 

  104. Dandawate P, Padhye S, Ahmad A, Sarkar FH. Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res. 2013;3:165–82. In this review the authors summarize the effect of different naturally occurring dietary components for their impact on self-renewal pathways and potential effect against cancer stem cells, thus providing the basis for pre-clinical and clinical evaluation of these dietary compounds for chemoprevention of cancer stem cells.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from CSIR, UGC, DBT postdoctoral program, and DST, Govt. of India.

Compliance with Ethics Guidelines

Conflict of Interest

Shravanti Mukherjee, Shilpi Saha, Argha Manna, Minakshi Mazumdar, Samik Chakraborty, Shrutarshi Paul, and Tanya Das declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Saha, S., Manna, A. et al. Targeting Cancer Stem Cells by Phytochemicals: a Multimodal Approach to Colorectal Cancer. Curr Colorectal Cancer Rep 10, 431–441 (2014). https://doi.org/10.1007/s11888-014-0251-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0251-4

Keywords

Navigation