Skip to main content

Advertisement

Log in

How Can Next-Generation Sequencing (Genomics) Help Us in Treating Colorectal Cancer?

  • Translational Colorectal Oncology (Y Jiang, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Next-generation sequencing methods have exponentially increased the amount of genomic information available to scientists and clinicians. This review will explain the evolution of tumor gene sequencing and identify its potential to accelerate therapeutic progress by using colorectal cancer to illustrate the benefits of this type of analysis. A milestone in sequencing occurred when The Cancer Genome Atlas investigators characterized the genomes of 276 colorectal cancer samples, with the resulting information expected to provide future clinical applications and help to guide the treatment of colorectal cancer. Data regarding colorectal cancer mutational frequencies, prognostic and predictive biomarker usefulness, and signaling pathway alterations are emerging from various next-generation sequencing platforms. Next-generation sequencing methods are also enhancing our understanding of the causes and consequences of both the chromosomal instability and microsatellite instability pathways as well as expanding our knowledge of the origins of familial colorectal cancer. Limitations to next-generation sequencing methods include the need for storage and analysis of massive quantities of data as well as assurance that the data is of the highest possible quality. However, this genomic technology carries with it the potential to revolutionize our treatment of colorectal cancer patients through better understanding of the underlying disease biology and subsequent development and application of therapeutic approaches targeting the genetic abnormalities specific to individual malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–17.

    Article  PubMed  Google Scholar 

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  PubMed  CAS  Google Scholar 

  3. Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. This paper reports a comprehensive genomic analysis of 276 colorectal cancer samples using multiple NGS methods, the first of its kind.

    Article  Google Scholar 

  4. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Chang F, Li MM. Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet. 2013;206(12):413–9.

    Article  PubMed  CAS  Google Scholar 

  6. Rizzo JM, Buck MJ. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila). 2012;5(7):887–900. This paper provides an excellent primer on NGS platforms and technologies for both clinicians and researchers.

    Article  CAS  Google Scholar 

  7. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45.

    Article  PubMed  CAS  Google Scholar 

  8. Liu L et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  9. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  10. Kim TM, Lee SH, Chung YJ. Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol. 2013;19(40):6784–93. This paper provides an overview of data obtained from genomic analyses of colorectal cancer by various NGS methods.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bardelli A et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science. 2003;300(5621):949.

    Article  PubMed  CAS  Google Scholar 

  12. Wang Z et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304(5674):1164–6.

    Article  PubMed  CAS  Google Scholar 

  13. Parsons DW et al. Colorectal cancer: mutations in a signalling pathway. Nature. 2005;436(7052):792.

    Article  PubMed  CAS  Google Scholar 

  14. Lipson D et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4. This paper reports on the discovery of new gene fusions in ALK and RET in colorectal tumors.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bass AJ et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet. 2011;43(10):964–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Seshagiri S et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Barber TD et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A. 2008;105(9):3443–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Aaltonen LA et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.

    Article  PubMed  CAS  Google Scholar 

  19. Parsons R et al. Hypermutability and mismatch repair deficiency in RER + tumor cells. Cell. 1993;75(6):1227–36.

    Article  PubMed  CAS  Google Scholar 

  20. Hampel H et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352(18):1851–60.

    Article  PubMed  CAS  Google Scholar 

  21. Kane MF et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.

    PubMed  CAS  Google Scholar 

  22. Ligtenberg MJ et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009;41(1):112–7.

    Article  PubMed  CAS  Google Scholar 

  23. Evaluation of Genomic Applications in, P. and G. Prevention Working. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med. 2009;11(1):35–41.

    Article  Google Scholar 

  24. Donehower LA et al. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. J Pathol. 2013;229(1):99–110. This study compares mutational frequencies between MLH1-silenced and non-MLH1 silenced hypermutated tumors from TCGA.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.

    Article  PubMed  CAS  Google Scholar 

  26. Gryfe R et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342(2):69–77.

    Article  PubMed  CAS  Google Scholar 

  27. Muller CI et al. Predictive and prognostic value of microsatellite instability in patients with advanced colorectal cancer treated with a fluoropyrimidine and oxaliplatin containing first-line chemotherapy. A report of the AIO Colorectal Study Group. Int J Colorectal Dis. 2008;23(11):1033–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ribic CM et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Sargent DJ et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Carethers JM et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology. 1999;117(1):123–31.

    Article  PubMed  CAS  Google Scholar 

  31. Jacob S et al. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res. 2001;61(17):6555–62.

    PubMed  CAS  Google Scholar 

  32. Network, N.C.C., NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): colon cancer. Version 3.2014. 2014; Accessed 07/07/14.

  33. Park JM et al. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells. PLoS ONE. 2013;8(5):e65369.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4(12):988–93.

    Article  PubMed  CAS  Google Scholar 

  35. Nagasaka T et al. Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol. 2004;22(22):4584–94.

    Article  PubMed  CAS  Google Scholar 

  36. Toyota M et al. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A. 2000;97(2):710–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Tahara T et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74(5):1311–8.

    Article  PubMed  CAS  Google Scholar 

  38. Palles C et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45(2):136–44. This paper reports on the importance of POLE and POLD1 mutations in the pathogenesis of CRC.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Jaeger E et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet. 2012;44(6):699–703.

    Article  PubMed  CAS  Google Scholar 

  40. Salazar R et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 2011;29(1):17–24. This study reports on the development of a gene expression classifier, ColoPrint®, to predict disease relapse in patients with early-stage colorectal cancer.

    Article  PubMed  Google Scholar 

  41. Roepman P et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer. 2014;134(3):552–62.

    Article  PubMed  CAS  Google Scholar 

  42. Loboda A et al. EMT is the dominant program in human colon cancer. BMC Med Genomics. 2011;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Budinska E et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol. 2013;231(1):63–76. This study developed 5 gene expression CRC subtypes through analysis of the PETACC3 cohort and subsequent validation in an independent test set.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Douillard JY et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–34. This retrospective analysis of the PRIME trial demonstrates the importance of expanded RAS mutational testing with regard to predictive biomarkers in CRC.

    Article  PubMed  CAS  Google Scholar 

  45. Douillard JY et al. Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25(7):1346–55.

    Article  PubMed  CAS  Google Scholar 

  46. Ciardiello, F., et al. Clinical activity of FOLFIRI plus cetuximab according to extended gene mutation status by next generation sequencing: findings from the CAPRI-GOIM trial. Ann Oncol, 2014.

  47. Normanno N, Petraroli R, Rico A, et al. The OncoNetwork Consortium: a European collaborative research study on the development of an Ion AmpliSeq gene panel targeting hot spots in colon and lung cancers. AACR Abstract. 2013(36).

  48. Peeters M et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Res. 2013;19(7):1902–12.

    Article  PubMed  CAS  Google Scholar 

  49. Natrajan R, Reis-Filho JS. Next-generation sequencing applied to molecular diagnostics. Expert Rev Mol Diagn. 2011;11(4):425–44.

    Article  PubMed  CAS  Google Scholar 

  50. Chen K et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Xi R et al. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci U S A. 2011;108(46):E1128–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Mamanova L et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8.

    Article  PubMed  CAS  Google Scholar 

  53. Bamshad MJ et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.

    Article  PubMed  CAS  Google Scholar 

  54. Shen P et al. High-quality DNA sequence capture of 524 disease candidate genes. Proc Natl Acad Sci U S A. 2011;108(16):6549–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc. 2007;2(9):2265–75.

    Article  PubMed  CAS  Google Scholar 

  57. Hajkova P et al. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol. 2002;200:143–54.

    PubMed  CAS  Google Scholar 

  58. Hansen KD et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82.

    Article  PubMed  CAS  Google Scholar 

  60. Costa V et al. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. Eur J Hum Genet. 2013;21(2):134–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Kristen K. Ciombor, Sigurdis Haraldsdottir, and Richard M. Goldberg declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciombor, K.K., Haraldsdottir, S. & Goldberg, R.M. How Can Next-Generation Sequencing (Genomics) Help Us in Treating Colorectal Cancer?. Curr Colorectal Cancer Rep 10, 372–379 (2014). https://doi.org/10.1007/s11888-014-0244-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0244-3

Keywords

Navigation