Skip to main content
Log in

Implantable Cardiovascular Sensors and Computers: Interventional Heart Failure Strategies

  • Interventional Cardiology (DJ Moliterno, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Despite evidence-based medical and pharmacologic advances the management of heart failure remains challenging, whether in the ambulatory setting where daily weight monitoring has failed, or in the inpatient setting where readmission rates and morbidity remains high. There is an urgent need to develop strategies to reduce hospitalizations and readmission rates for heart failure in general. There may be a shift in the paradigm with respect to the treatment of heart failure, which may usher in an era of invasive heart failure therapies and specialists. Experimental invasive devices and monitors have the potential to be game-changing therapies, and cardiac resynchronization therapy has evolved beyond just resynchronization and has the potential to provide important real-time hemodynamic feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ross JS, Chen J, Lin Z, et al. Recent national trends in readmission rates after heart failure hospitalization. Circ Heart Fail. 2010;3:97–103.

    Article  PubMed  Google Scholar 

  2. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med. 2009;360:1418–28.

    Article  PubMed  CAS  Google Scholar 

  3. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209. 2010 Dec 15.

    Article  PubMed  Google Scholar 

  4. Klersy C, De Silvestri A, Gabutti G, et al. A meta-analysis of remote monitoring of heart failure patients. J Am Coll Cardiol. 2009;54:1683–94.

    Article  PubMed  Google Scholar 

  5. Chaudhry SI, Mattera JA, Curtis JP, et al. Telemonitoring in patients with heart failure. N Engl J Med. 2010;363:2301–9.

    Article  PubMed  CAS  Google Scholar 

  6. Koehler F, Winkler S, Schieber M, et al. Telemedical interventional monitoring in heart failure (TIM-HF), a randomized, controlled intervention trial investigating the impact of telemedicine on mortality in ambulatory patients with heart failure: study design. Eur J Heart Fail. 2010;12:1354–62.

    Article  PubMed  Google Scholar 

  7. Zhang J, Goode KM, Cuddihy PE, Cleland JG. TEN-HMS Investigators. Predicting hospitalization due to worsening heart failure using daily weight measurement: analysis of the Trans-European Network-home-care management system (TEN-HMS) study. Eur J Heart Fail. 2009;11:420–7.

    Article  PubMed  Google Scholar 

  8. Abraham WT, Compton S, Haas G, et al. On behalf of the FAST Study Investigators. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail. 2011;17:51–5.

    Article  PubMed  Google Scholar 

  9. Chaudhry SI, Wang Y, Concato J, et al. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116:1549–54.

    Article  PubMed  Google Scholar 

  10. Smith SA, Abraham WT. Device therapy in advanced heart failure: what to put in and what to turn off: remote telemonitoring and implantable hemodynamic devices for advanced heart failure monitoring in the ambulatory setting and the evolving role of cardiac resynchronization therapy. Congest Heart Fail. 2011;17:220–6.

    Article  PubMed  Google Scholar 

  11. Reynolds DW, Bartelt N, Taepke R, Bennett TD. Measurement of pulmonary artery diastolic pressure from the right ventricle. J Am Coll Cardiol. 1995;25:1176–82.

    Article  PubMed  CAS  Google Scholar 

  12. Adamson PB, Magalski A, Braunschweig F, et al. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol. 2003;41:565–71.

    Article  PubMed  Google Scholar 

  13. Bourge RC, Abraham WT, Adamson PB, et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol. 2008;51:1073–9.

    Article  PubMed  Google Scholar 

  14. Ritzema J, Melton IC, Richards AM, et al. Direct left atrial pressure monitoring in ambulatory heart failure patients: initial experience with a new permanent implantable device. Circulation. 2007;116:2952–9.

    Article  PubMed  Google Scholar 

  15. Troughton RW, Ritzema J, Eigler NL, et al. Direct left atrial pressure monitoring in severe heart failure: long-term sensor performance. J Cardiovasc Transl Res. 2011;4:3–13.

    Article  PubMed  Google Scholar 

  16. Ritzema J, Troughton R, Melton I, et al. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation. 2010;121:1086–95.

    Article  PubMed  Google Scholar 

  17. Adamson PB, Abraham WT, Aaron M, et al. CHAMPION trial rationale and design: the long-term safety and clinical efficacy of a wireless pulmonary artery pressure monitoring system. J Card Fail. 2011;17:3–10.

    Article  PubMed  Google Scholar 

  18. • Abraham WT, Adamson PB, Bourge RC, et al. The CHAMPION Trial Study Group. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66. This is the first positive, randomized, adequately powered clinical trial of implantable hemodynamic monitoring in patients with moderately symptomatic heart failure. The treatment group had a 39 % reduction in heart-failure-related hospitalizations compared with the control group.

    Article  PubMed  Google Scholar 

  19. Gómez AM, Valdivia HH, Cheng H, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997;276:800–6.

    Article  PubMed  Google Scholar 

  20. Dipla K, Mattiello JA, Margulies KB, et al. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res. 1999;84:435–44.

    Article  PubMed  CAS  Google Scholar 

  21. Burkhoff D, Shemer I, Felzen B, et al. Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev. 2001;6:27–34.

    Article  PubMed  CAS  Google Scholar 

  22. Pappone C, Augello G, Rosanio S, et al. First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol. 2004;15:418–27.

    Article  PubMed  Google Scholar 

  23. Butter C, Rastogi S, Minden HH, et al. Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol. 2008;51:1784–9.

    Article  PubMed  CAS  Google Scholar 

  24. Borggrefe MM, Lawo T, Butter C, et al. Randomized, double blind study of nonexcitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J. 2008;29:1019–28.

    Article  PubMed  Google Scholar 

  25. Abraham WT, Burkhoff D, Nademanee K, et al. FIX-HF-5 Investigators and Coordinators. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics. Am Heart J. 2008;156:641–8.e1.

    Article  PubMed  Google Scholar 

  26. • Kadish A, Nademanee K, Volosin K, et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J. 2011;161:329–37.e1–2. Cardiac contractility modulation did not improve ventilatory anaerobic threshold (the primary end point) but did improve pVo 2 . Importantly, there were no adverse events or mortalities with this therapy.

    Article  PubMed  Google Scholar 

  27. Abraham WT, Nademanee K, Volosin K, et al. FIX-HF-5 Investigators and coordinators. Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail. 2011;17:710–7.

    Article  PubMed  Google Scholar 

  28. • Sabbah HN, Gupta RC, Imai M, et al. Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure. Circ Heart Fail. 2011;4:65–70. Provides the rational for pursuing carotid sinus baroreflex therapy in humans.

    Article  PubMed  Google Scholar 

  29. Lovett EG, Shafer J, Kaufman CL. Chronic activation by the Rheos System: an overview of results from European and North American feasibility studies. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4626e30.

    Google Scholar 

  30. Koren MJ, Devereux RB, Casale PN, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345e52.

    Google Scholar 

  31. • Georgakopoulos D, Little WC, Abraham WT, et al. Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Card Fail. 2011;17:167–78. Excellent review of the literature regarding chronic baroreflex activation and introduces the HOPE4HF trial, a randomized outcomes trial designed to evaluate the clinical safety and efficacy of BAT in the heart failure with preserved ejection fraction population.

    Article  PubMed  Google Scholar 

  32. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

    Article  PubMed  Google Scholar 

  33. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.

    Article  PubMed  CAS  Google Scholar 

  34. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  PubMed  CAS  Google Scholar 

  35. Beshai JF, Grimm RA, Nagueh SF, et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. N Engl J Med. 2007;357:2461–71.

    Article  PubMed  CAS  Google Scholar 

  36. Linde C, Abraham WT, Gold MR, et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol. 2008;52:1834–43.

    Article  PubMed  Google Scholar 

  37. • Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–38. MADIT CRT Trial, which had favorable outcomes for patients with left bundle branch block and NYHA class II or ischemic class I HF with an LVEF <30 % and a QRS duration >130 ms.

    Article  PubMed  Google Scholar 

  38. St John Sutton M, Ghio S, Plappert T, et al. Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation. 2009;120:1858–65.

    Article  PubMed  Google Scholar 

  39. Tang AS, Wells GA, Talajic M, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363:2385–95.

    Article  PubMed  CAS  Google Scholar 

  40. Chung ES, Katra RP, Ghio S, et al. Cardiac resynchronization therapy may benefit patients with left ventricular ejection fraction >35 %: a PROSPECT trial substudy. Eur J Heart Fail. 2010;12:581–7.

    Article  PubMed  Google Scholar 

  41. FDA Press Release September 16, 2010. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf/p010012s230a.pdf.

  42. Yu CM, Wang L, Chau E, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112:841–8.

    Article  PubMed  Google Scholar 

  43. Ypenburg C, Bax JJ, van der Wall EE, et al. Intrathoracic impedance monitoring to predict decompensated heart failure. Am J Cardiol. 2007;99:554–7.

    Article  PubMed  Google Scholar 

  44. Valzania C, Eriksson MJ, Holmström N, et al. Multiple vector impedance measurements during biventricular pacing: feasibility and possible implications for hemodynamic monitoring. Pacing Clin Electrophysiol. 2009;32:1492–500.

    Article  PubMed  Google Scholar 

  45. Khoury DS, Naware M, Siou J, et al. Ambulatory monitoring of congestive heart failure by multiple bioelectric impedance vectors. J Am Coll Cardiol. 2009;53:1075–81.

    Article  PubMed  Google Scholar 

  46. Adamson PB, Smith AL, Abraham WT, et al. Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device. Circulation. 2004;110:2389–94.

    Article  PubMed  Google Scholar 

  47. Whellan DJ, Ousdigian KT, Al-Khatib SM, et al. Combined heart failure device diagnostics identify patients at higher risk of subsequent heart failure hospitalizations: results from PARTNERS HF (program to access and review trending information and evaluate correlation to symptoms in patients with heart failure) study. J Am Coll Cardiol. 2010;55:1803–10.

    Article  PubMed  Google Scholar 

  48. Smith S, Curran J, Hund TJ, Mohler PJ. Defects in cytoskeletal signaling pathways, arrhythmia, and sudden cardiac death. Front Physiol. 2012;3:122.

    Article  PubMed  CAS  Google Scholar 

  49. Gudmundsson H, Curran J, Kashef F, et al. Differential regulation of EHD3 in human and mammalian heart failure. J Mol Cell Cardiol. 2012;52:1183–90.

    Article  PubMed  CAS  Google Scholar 

  50. Roger VL, Go AS, Lloyd-Jones DM. et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: W.T. Abraham: has been a consultant for and received grant support from Medtronic Inc., CardioMEMS, St. Jude Medical, and CVRx; S.A. Smith: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakima A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.A., Abraham, W.T. Implantable Cardiovascular Sensors and Computers: Interventional Heart Failure Strategies. Curr Cardiol Rep 14, 611–618 (2012). https://doi.org/10.1007/s11886-012-0294-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-012-0294-6

Keywords

Navigation