Skip to main content

Advertisement

Log in

The Robotic Appendicovesicostomy and Bladder Augmentation

  • Pediatric Bladder Dysfunction (SJ Hodges, Section Editor)
  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

The use of robotic approaches has permeated the field of urology with continued advances in pediatric urology. Increasingly, more complex urologic procedures are being performed using a minimally invasive approach. The goal is to deliver at least equivalent long-term outcomes while minimizing the morbidity classically associated with open approaches. The robotic-assisted laparoscopic Mitrofanoff appendicovesicostomy with (RALIMA) or without (RALMA) ileocystoplasty represents the forefront of reconstructive pediatric urology. Select centers have demonstrated the safety and efficacy of these procedures. We review the indications, preoperative preparations, operative techniques, outcomes, current controversies, and future directions of RALMA and RALIMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mitrofanoff P. [Trans-appendicular continent cystostomy in the management of the neurogenic bladder]. Chir Pédiatrique. 1980;21:297–305.

    CAS  Google Scholar 

  2. Cundy TP, Shetty K, Clark J, Chang TP, Sriskandarajah K, Gattas NE, et al. The first decade of robotic surgery in children. J Pediatr Surg. 2013;48:858–65.

    Article  PubMed  Google Scholar 

  3. Avery DI, Herbst KW, Lendvay TS, Noh PH, Dangle P, Gundeti MS, et al. Robot-assisted laparoscopic pyeloplasty: multi-institutional experience in infants. J Pediatr Urol. 2015;11:139.e1–5.

    Article  Google Scholar 

  4. Cain MP, Dussinger AM, Gitlin J, Casale AJ, Kaefer M, Meldrum K, et al. Updated experience with the Monti catheterizable channel. Urology. 2008;72:782–5.

    Article  PubMed  Google Scholar 

  5. Wolf JS, Bennett CJ, Dmochowski RR, Hollenbeck BK, Pearle MS, Schaeffer AJ, et al. Best practice policy statement on urologic surgery antimicrobial prophylaxis. J Urol. 2008;179:1379–90.

    Article  PubMed  Google Scholar 

  6. Calvert JK, Holt SK, Mossanen M, James AC, Wright JL, Porter MP, et al. Use and outcomes of extended antibiotic prophylaxis in urological cancer surgery. J Urol. 2014;192:425–9.

    Article  CAS  PubMed  Google Scholar 

  7. Shafii M, Murphy DM, Donovan MG, Hickey DP. Is mechanical bowel preparation necessary in patients undergoing cystectomy and urinary diversion? BJU Int. 2002;89:879–81.

    Article  CAS  PubMed  Google Scholar 

  8. Large MC, Kiriluk KJ, DeCastro GJ, Patel AR, Prasad S, Jayram G, et al. The impact of mechanical bowel preparation on postoperative complications for patients undergoing cystectomy and urinary diversion. J Urol. 2012;188:1801–5.

    Article  PubMed  Google Scholar 

  9. Raynor MC, Lavien G, Nielsen M, Wallen EM, Pruthi RS. Elimination of preoperative mechanical bowel preparation in patients undergoing cystectomy and urinary diversion. Urol Oncol. 2013;31:32–5.

    Article  PubMed  Google Scholar 

  10. Gundeti MS, Godbole PP, Wilcox DT. Is bowel preparation required before cystoplasty in children? J Urol. 2006;176:1574–6. discussion 1576–7.

    Article  PubMed  Google Scholar 

  11. Víctor D, Burek C, Corbetta JP, Sentagne A, Sager C, Weller S, et al. Augmentation cystoplasty in children without preoperative mechanical bowel preparation. J Pediatr Urol. 2012;8:201–4.

    Article  PubMed  Google Scholar 

  12. Casperson KJ, Fronczak CM, Siparsky G, O’Donnell C, Gundeti MS, Campbell JB, et al. Ventriculoperitoneal shunt infections after bladder surgery: is mechanical bowel preparation necessary? J Urol. 2011;186:1571–5.

    Article  PubMed  Google Scholar 

  13. Baker D, Sherrod B, McGwin G, Ponce B, Gilbert S. Complications and 30-day outcomes associated with venous thromboembolism in the pediatric orthopaedic surgical population. J Am Acad Orthop Surg. 2016;24:196–206.

  14. Halvorson EE, Ervin SE, Russell TB, Skelton JA, Davis S, Spangler J. Association of obesity and pediatric venous thromboembolism. Hosp Pediatr. 2016;6:22–6.

    Article  PubMed  Google Scholar 

  15. Gundeti MS, Acharya SS, Zagaja GP, Shalhav AL. Paediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy (RALIMA): feasibility of and initial experience with the University of Chicago technique. BJU Int. 2011;107:962–9.

    Article  PubMed  Google Scholar 

  16. Marchetti P, Razmaria A, Zagaja GP, Gundeti MS. Management of the ventriculo-peritoneal shunt in pediatric patients during robot-assisted laparoscopic urologic procedures. J Endourol. 2011;25:225–9.

    Article  PubMed  Google Scholar 

  17. Yee DS, Duel BP. Omental herniation through a 3-mm umbilical trocar site. J Endourol. 2006;20:133–4.

    Article  PubMed  Google Scholar 

  18. Waldhaussen JH. Incisional hernia in a 5-mm trocar site following pediatric laparoscopy. J Laparoendosc Surg. 1996;6 Suppl 1:S89–90.

    PubMed  Google Scholar 

  19. Gundeti MS, Eng MK, Reynolds WS, Zagaja GP. Pediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy: complete intracorporeal—initial case report. Urology. 2008;72:1144–7. discussion 1147.

    Article  PubMed  Google Scholar 

  20. Famakinwa OJ, Rosen AM, Gundeti MS. Robot-assisted laparoscopic Mitrofanoff appendicovesicostomy technique and outcomes of extravesical and intravesical approaches. Eur Urol. 2013;64:831–6.

    Article  PubMed  Google Scholar 

  21. Nguyen HT, Passerotti CC, Penna FJ, Retik AB, Peters CA. Robotic assisted laparoscopic Mitrofanoff appendicovesicostomy: preliminary experience in a pediatric population. J Urol. 2009;182:1528–34.

    Article  PubMed  Google Scholar 

  22. Grimsby GM, Jacobs MA, Gargollo PC. Comparison of complications of robot-assisted laparoscopic and open appendicovesicostomy in children. J Urol. 2015;194:772–6. This is a recent study regarding perioperative outcomes of RALMA. Notably, outcomes from robotic approach were compared to a similar cohort of children who underwent open appendicovesicostomy with no significant differences in the rate of complications.

    Article  PubMed  Google Scholar 

  23. Murthy P, Cohn JA, Selig RB, Gundeti MS. Robot-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy in children: updated interim results. Eur Urol. 2015;68:1069–75. This a recent, updated single center experience of RALIMA with comparison to children treated using an open approach. RALIMA was associated with a significantly longer operative time but shorter length of stay.

    Article  PubMed  Google Scholar 

  24. Wille MA, Zagaja GP, Shalhav AL, Gundeti MS. Continence outcomes in patients undergoing robotic assisted laparoscopic Mitrofanoff appendicovesicostomy. J Urol. 2011;185:1438–43.

    Article  PubMed  Google Scholar 

  25. Grimsby GM, Menon V, Schlomer BJ, Baker LA, Adams R, Gargollo PC, et al. Long-term outcomes of bladder neck reconstruction without augmentation cystoplasty in children. J Urol. 2016;195:155–61. This study assessed long term outcomes in children who underwent bladder neck reconstruction without bladder augmentation. They demonstrated considerable need for follow-up procedures and upper tract deterioration, which stresses the need for careful patient selection and close follow-up.

    Article  PubMed  Google Scholar 

  26. Flum AS, Zhao LC, Kielb SJ, Wilson EB, Shu T, Hairston JC. Completely intracorporeal robotic-assisted laparoscopic augmentation enterocystoplasty with continent catheterizable channel. Urology. 2014;84:1314–8.

    Article  PubMed  Google Scholar 

  27. Vanni AJ, Stoffel JT. Ileovesicostomy for the neurogenic bladder patient: outcome and cost comparison of open and robotic assisted techniques. Urology. 2011;77:1375–80.

    Article  PubMed  Google Scholar 

  28. Schlomer BJ, Saperston K, Baskin L. National trends in augmentation cystoplasty in the 2000s and factors associated with patient outcomes. J Urol. 2013;190:1352–7.

    Article  PubMed  Google Scholar 

  29. Behan JW, Kim SS, Dorey F, De Filippo RE, Chang AY, Hardy BE, et al. Human capital gains associated with robotic assisted laparoscopic pyeloplasty in children compared to open pyeloplasty. J Urol. 2011;186:1663–7.

    Article  PubMed  Google Scholar 

  30. Varda BK, Johnson EK, Clark C, Chung BI, Nelson CP, Chang SL. National trends of perioperative outcomes and costs for open, laparoscopic and robotic pediatric pyeloplasty. J Urol. 2014;191:1090–5. Using a national database that included billing information, trends of robotic pediatric pyeloplasty were analyzed including cost analyses based on approach.

    Article  PubMed  Google Scholar 

  31. Liu DB, Ellimoottil C, Flum AS, Casey JT, Gong EM. Contemporary national comparison of open, laparoscopic, and robotic-assisted laparoscopic pediatric pyeloplasty. J Pediatr Urol. 2014;10:610–5.

  32. Atalla MA, Dovey Z, Kavoussi LR. Laparoscopic versus robotic pyeloplasty: man versus machine. Expert Rev Med Devices. 2010;7:27–34.

    Article  PubMed  Google Scholar 

  33. Rowe CK, Pierce MW, Tecci KC, Houck CS, Mandell J, Retik AB, et al. A comparative direct cost analysis of pediatric urologic robot-assisted laparoscopic surgery versus open surgery: could robot-assisted surgery be less expensive? J Endourol. 2012;26:871–7.

    Article  PubMed  Google Scholar 

  34. Razmaria AA, Marchetti PE, Prasad SM, Shalhav AL, Gundeti MS. Does robot-assisted laparoscopic ileocystoplasty (RALI) reduce peritoneal adhesions compared with open surgery? BJU Int. 2014;113:468–75.

    Article  PubMed  Google Scholar 

  35. Blinman T. Incisions do not simply sum. Surg Endosc. 2010;24:1746–51.

    Article  PubMed  Google Scholar 

  36. Barbosa JABA, Barayan G, Gridley CM, Sanchez DCJ, Passerotti CC, Houck CS, et al. Parent and patient perceptions of robotic vs open urological surgery scars in children. J Urol. 2013;190:244–50.

    Article  PubMed  Google Scholar 

  37. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gettman M, Rivera M. Innovations in robotic surgery. Curr Opin Urol. 2015;26:271–6.

  39. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  40. Joseph DB, Borer JG, De Filippo RE, Hodges SJ, McLorie GA. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol. 2014;191:1389–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Pariser.

Ethics declarations

Conflict of Interest

Drs Pariser, Riedinger, Fantus, and Gundeti declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Pediatric Bladder Dysfunction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pariser, J.J., Riedinger, C.B., Fantus, R.J. et al. The Robotic Appendicovesicostomy and Bladder Augmentation. Curr Bladder Dysfunct Rep 11, 218–224 (2016). https://doi.org/10.1007/s11884-016-0370-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-016-0370-7

Keywords

Navigation