Skip to main content

Advertisement

Log in

A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement

  • Vascular Biology (J. Hamilton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:29–322.

    Article  Google Scholar 

  2. Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127:749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schmidt R, Lauter J. MyHeart: fighting cardio-vascular diseases by preventive lifestyle and early diagnosis. Stud Health Technol Inform. 2005;117:51–9.

    PubMed  Google Scholar 

  4. Suri JS, Kathuria C, Molinari F. Atherosclerosis disease management. Springer; 2011

  5. • Boesen ME, Singh D, Menon BK, Frayne R. A systematic literature review of the effect of carotid atherosclerosis on local vessel stiffness and elasticity. Atherosclerosis. 2015;243:211–22. This article exhibits the effect of carotid atherosclerotic plaque on local arterial stiffness.

  6. Gamble G, Zorn J, Sanders G, MacMahon S, Sharpe N. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke. 1994;25:11–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lechareas S, Yanni A, Golemati S, Chatziioannou A, Perrea D. Ultrasound and biochemical diagnostic tools for the characterization of vulnerable carotid atherosclerotic plaque. Ultrasound Med Biol. 2015;42:31–43.

    Article  PubMed  Google Scholar 

  8. Yuan LJ, Xue D, Duan YY, Coa TS, Yang HG, Zhou N. Carotid arterial intima–media thickness and arterial stiffness in pre-eclampsia: analysis with a radiofrequency Ultrasound technique. Ultrasound Obstet Gynecol. 2013;42:644–52.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Yin JK, Duan YY, Liu X, Xu L, Wang J, et al. Evaluation of carotid artery elasticity changes in patients with type 2 diabetes. Cardiovasc Diabetol. 2014;13:1–10.

    Article  Google Scholar 

  10. Bianchini E, Gemignani V, Faita F, Giannarelli C, Ghiadoni L, Demi M, et al. Assessment of carotid stiffness and intima-media thickness from ultrasound data: comparison between two methods. J Ultrasound Med. 2010;29:1169–75.

    PubMed  Google Scholar 

  11. Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33:1111–7.

    Article  CAS  PubMed  Google Scholar 

  12. Mattace-Raso FUS, van der Cammen TJM, Hofman A, van Popele NM, Bos ML, Schalekamp MADH, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  13. Greenwald SE. Pulse pressure and arterial elasticity. Q J Med. 2002;95:107–12.

    Article  CAS  Google Scholar 

  14. Antonini-Canterin F, Roşca M, Beladan CC, Popescu BA, Piazza R, Leiballi E, et al. Echo-tracking assessment of carotid artery stiffness in patients with aortic valve stenosis. Echocardiography. 2009;26:823–31.

    Article  PubMed  Google Scholar 

  15. Gimbrone Jr MA, Cybulsky MI, Kume N, Collins T, Resnick N. Vascular endothelium: an integrator of pathophysiological stimuli in atherogenesis. Ann N Y Acad Sci. 1995;748:122–31.

    Article  CAS  PubMed  Google Scholar 

  16. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278:483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross R. Cell Biology of atherosclerosis. Annu Rev Physiol. 1995;57:791–804.

    Article  CAS  PubMed  Google Scholar 

  18. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116:1832–44.

    Article  CAS  PubMed  Google Scholar 

  19. Luthra K, Mishra A, Srivastava LM. Lipoprotein(a): biology and role in atherosclerotic vascular diseases. Curr Sci. 1999;76:1553–60.

    CAS  Google Scholar 

  20. •• Libby P, Ridker PM PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25. This article discusses the pathophysiological formation of the atherosclerotic plaque.

  21. Raines EW, Ferri N. Thematic review series: the immune system and atherogenesis, cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res. 2005;46:1081–92.

    Article  CAS  PubMed  Google Scholar 

  22. Arroyo LH, Lee RT. Mechanisms of plaque rupture: mechanical and biologic interactions. Cardiovasc Res. 1999;41:369–75.

    Article  CAS  PubMed  Google Scholar 

  23. Teng Z, Zhang Y, Huang Y, Feng J, Yuan J, Lu Q, et al. Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta Biomater. 2014;10:5055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohn JN, Colucci W. Cardiovascular effects of aldosterone and post-acute myocardial infarction pathophysiology. Am J Cardiol. 2006;97:4–12.

    Article  Google Scholar 

  25. Tracqui P, Broisat A, Toczek J, Mesnier N, Ohayon J, Riou L. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. J Struct Biol. 2011;174:115–23.

    Article  PubMed  Google Scholar 

  26. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma: co-localization with interleukin-1-converting enzyme. Am J Pathol. 1995;147:251–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995;91:2703–11.

    Article  CAS  PubMed  Google Scholar 

  28. Geng YJ, Wu Q, Muszynski M, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1-beta. Arterioscler Thromb Vasc Biol. 1996;16:19–27.

    Article  CAS  PubMed  Google Scholar 

  29. Bruel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis. 1996;127:155–65.

    Article  CAS  PubMed  Google Scholar 

  30. Cheung YF, Wong SJ, Ho MH. Relationship between carotid intima-media thickness and arterial stiffness in children after Kawasaki disease. Arch Dis Child. 2007;92:43–7.

    Article  PubMed  Google Scholar 

  31. Cheung YF, Chow PC, Chan GC, Ha SY. Carotid intima media thickness is increased and related to arterial stiffening in patients with beta-thalassaemiamajor. Br J Haematol. 2006;135:732–34.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Yin JK, Duan YY, Liu X, Xu L, Wang J, et al. Evaluation of carotid artery elasticity changes in patients with type 2 diabetes. Cardiovasc Diabetol. 2014. doi:10.1186/1475-2840-13-39.

    Google Scholar 

  33. •• Selzer RH, Mack WJ, Lee PL, Kwong-Fu H, Hodis HN. Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Atherosclerosis. 2011;154:185–93. The article uses computerized edge tracking method for carotid arterial diameter and carotid intima-media thickness measurement in multiple frames of the cardiac cycle.

  34. Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68:50–8.

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Kang X, Xue J, Kang C, Lv H, Li Z. Evaluation of carotid artery elasticity changes in patients with cerebral small vessel disease. Int J Clin Exp Med. 2015;8:18825–30.

    PubMed  PubMed Central  Google Scholar 

  36. Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6.

    Article  PubMed  Google Scholar 

  37. Callaghan FJ, Geddes LA, Babba CF, Bourland JD. Relationship between pulse-wave velocity and arterial elasticity. Med Biol Eng Comput. 1986;24:248–54.

    Article  CAS  PubMed  Google Scholar 

  38. Soleimani E, Mokhtari-Dizaji M, Saberi H. A novel non-invasive ultrasonic method to assess total axial stress of the common carotid wall in healthy and atherosclerotic men. J Biomech. 2015;48:1860–7.

    Article  PubMed  Google Scholar 

  39. Meaume S, Benetos A, Henry OF. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001;21:2046–50.

    Article  CAS  PubMed  Google Scholar 

  40. Farrar DJ, Green HD, Bond MG, Wagner WD, Gobbeé RA. Aortic pulse wave velocity, elasticity, and composition in a nonhuman primate model of atherosclerosis. Circ Res. 1978;43:52–62.

    Article  CAS  PubMed  Google Scholar 

  41. Cinthio M, Ahlgren AR, Bergkvist J, Jansson T, Persson HW, Lindström K. Longitudinal movements and resulting shear strain of the arterial wall. Am J Physiol Heart Circ Physiol. 2006;291:394–402.

    Article  Google Scholar 

  42. Svedlund S, Gan LM. Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging. Clin Physiol Funct Imaging. 2011;31:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Oates CP, Naylor AR, Hartshorne T, Charles SM, Fail T, Humphries K, et al. Joint recommendations for reporting carotid ultrasound investigations in the United Kingdom. Eur J Vasc Endovasc Surg. 2009;37:251–61.

    Article  CAS  PubMed  Google Scholar 

  44. Wong CB, Wong JC. A novel method to quantify carotid artery stenosis by Doppler ultrasound: Using the continuity principle. Int J Angiol. 2010;19:86–90.

    Article  Google Scholar 

  45. Shapiro GL, Stockman CG. Computer Vision. 1st ed. Pearson; 2000.

  46. Destrempes F, Meunier J, Giroux MF, Soulez G, Cloutier G. Segmentation in ultrasonic B-mode images of healthy carotid arteries using mixtures of nakagami distributions and stochastic optimization. IEEE Trans Med Imaging. 2009;28:215–29.

    Article  PubMed  Google Scholar 

  47. Haas C, Ermert H, Holt S, Grewe P, Machraoui A, Barmeyer J. Segmentation of 3-D intravascular ultrasonic images based on a random field model. Ultrasound Med Biol. 2000;26:297–306.

    Article  CAS  PubMed  Google Scholar 

  48. Francois O. Global optimization with exploration/selection algorithms and simulated annealing. Ann Appl Probab. 2002;12:248–71.

    Article  Google Scholar 

  49. Molinari F, Zeng G, Suri JS. An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique. J Ultrasound Med. 2010;29:399–418.

    PubMed  Google Scholar 

  50. Seabra JC, Ciompi F, Pujol O, Mauri J, Radeva P, Sanches J. Rayleigh mixture model for plaque characterization in intravascular ultrasound. IEEE Trans Biomed Eng. 2011;58:1314–24.

    Article  PubMed  Google Scholar 

  51. Menchon-Lara RM, Bastida-Jumilla MC, Morales-Sanchez J, Sancho-Gomez JL. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med Biol Eng Comput. 2014;52:169–81.

    Article  PubMed  Google Scholar 

  52. Carvalho DDB, Akkus Z, Van den Oord SCH, Schinkel AFL, Van der Steen AFW, Niessen WJ, et al. Lumen segmentation and motion estimation in B-mode and contrast-enhanced ultrasound images of the carotid artery in patients with atherosclerotic plaque. IEEE Trans Med Imaging. 2015;34:883–93.

    Article  Google Scholar 

  53. Jayaram S, Esakkirajan S, Veerakumar T. Digital image processing. 1st ed. Tata McGraw-Hill Education; 2009.

  54. Kass M, Witkin A, Terzopoulos D. Snakes: active contours models. Int J Comput Vis. 1988;4:321–31.

    Article  Google Scholar 

  55. Suri JS, Farah A. Deformable models volumes I and II: biomedical and clinical applications (Topics in biomedical engineering). 1st ed. Springer; 2007.

  56. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A. Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput. 2007;45:35–49.

    Article  CAS  PubMed  Google Scholar 

  57. Molinari F, Meiburger KM, Zeng G, Nicolaides A, Suri JS. CAUDLES-EF: carotid automated ultrasound double line extraction system using edge flow. J Digit Imaging. 2011;24:1059–77.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Golemati S, Stoitsis J, Sifakis EG, Balkizas T, Nikita KS. Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol. 2007;33:918–32.

    Article  Google Scholar 

  59. Liang Q, Wendelhag I, Wikstrand J, Gustavsson T. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans Med Imaging. 2000;19:127–42.

    Article  CAS  PubMed  Google Scholar 

  60. Meiburger KM, Molinari F, Acharya UR, Saba L, Rodrigues P, Liboni W, et al. Automated carotid artery intima layer regional segmentation. Phys Med Biol. 2011;56:4073–90.

    Article  PubMed  Google Scholar 

  61. Ilea DE, Duffy C, Kavanagh L, Stanton A, Whelan PF. Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:158–77.

    Article  PubMed  Google Scholar 

  62. Kanber B, Ramnarine KV. A probabilistic approach to computerized tracking of arterial walls in ultrasound image sequences. Int Sch Res Netw (ISRN). 2012. doi:10.5402/2012/179087.

    Google Scholar 

  63. Chen Y, Peng B, Liu DC. Fully automated intima media thickness measurement of posterior wall in longitudinal ultrasound B-mode scans. Int J Signal Process Image Process Pattern Recog. 2014;7:9–18.

    Google Scholar 

  64. Touboul PJ, Prati P, Scarabin PY, Adrai V, Thibout E, Ducimetiere P. Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. J Hypertens. 1992;10:37–41.

    Article  Google Scholar 

  65. Molinari F, Meiburger KM, Zeng G, Acharya UR, Liboni W, Nicolaides A, et al. Carotid artery recognition system: a comparison of three automated paradigms for ultrasound images. Med Phys. 2012;39:378–91.

    Article  PubMed  Google Scholar 

  66. • Molinari F, Zeng G, Suri JS. A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Prog Biomed. 2010;100:201–21. The paper presents review different methods for lumen-intima and mediaadventitia boundary segmentation techniques such as: dynamic programming, local statistics, edge-detection, active contours, statistical modelling, Hough transform, and hybrid techniques. It also discusses about carotid IMT measurement techniques.

  67. Meiburger KM, Molinari F, Zeng G, Saba L, Suri JS. Carotid automated ultrasound double line extraction system (CADLES) via Edge-Flow. Conf Proc IEEE Eng Med Biol Soc. 2011. doi:10.1109/IEMBS.2011.6090107.

    Google Scholar 

  68. Suri JS. Computer vision, pattern recognition and image processing in left ventricle segmentation: the last 50 years. Pattern Anal Applic. 2000;3:209–42.

    Article  Google Scholar 

  69. El-Baz A, Gimel’farb D, Suri JS. Stochastic modeling for medical image analysis. 1st ed. CRC Press; 2015.

  70. Molinari F, Meiburger KM, Acharya UR, Zeng G, Rodrigues PS, Saba L, et al. CARES 3.0: a two stage system combining feature-based recognition and edge-based segmentation for CIMT measurement on a multi-instititional ultrasound database of 300 images. Conf Proc IEEE Eng Med Biol Soc. 2011. doi:10.1109/IEMBS.2011.6091275.

    Google Scholar 

  71. Hassan M, Chaudhry A, Khan A, Iftikhar MA. Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images. Comput Methods Prog Biomed. 2014;113:593–609.

    Article  Google Scholar 

  72. Rocha R, Campilho A, Silva J, Azevedo E, Santos R. Segmentation of ultrasound images of the carotid using RANSAC and cubic splines. Comput Methods Prog Biomed. 2011;101:94–106.

    Article  Google Scholar 

  73. Yamagishi T, Kato M, Koiwa Y, Hasegawa H, Kanai H. Impact of lifestyle-related diseases on carotid arterial wall elasticity as evaluated by an ultrasonic phased-tracking method in Japanese subjects. J Med Ultrason. 2009;16:782–92.

    CAS  Google Scholar 

  74. Araki T, Ikeda N, Dey N, Chakraborty S, Saba L, Kumar D, et al. A comparative approach of four different image registration techniques for quantitative assessment of coronaryartery calcium lesions using intravascular ultrasound. Comput Methods Prog Biomed. 2015;118:158–72.

    Article  Google Scholar 

  75. Zhang P, Guo R, Xiao D, Chu S, Gong L, Zhang C, et al. Influence of smoking cessation on carotid artery wall elasticity evaluated by echo-tracking. J Clin Ultrasound. 2012;40:352–6.

    Article  PubMed  Google Scholar 

  76. Apostolakis IZ, Gastounioti A, Golemati S, Nikita KS. Ultrasound-image-based displacement and strain maps of the human carotid artery using weighted-least-squares optical flow. IEEE Int Conf Imaging Syst Tech (IST). 2012. doi:10.1109/IST.2012.6295565.

    Google Scholar 

  77. Saba L, Molinari F, Meiburger KM, Piga M, Zeng G, Rajendra Achraya U, et al. What is the correct distance measurement metric when measuring carotid ultrasound intima-media thickness automatically? Int Angiol. 2012;31:483–9.

    CAS  PubMed  Google Scholar 

  78. Molinari F, Meiburger KM, Zeng G, Saba L, Rajendra Acharya U, Famiglietti L, et al. Automated carotid IMT measurement and its validation in low contrast ultrasound database of 885 patient Indian population epidemiological study: results of AtheroEdge™ Software. Int Angiol. 2012;31:42–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. 1993;15:850–63.

    Article  Google Scholar 

  80. Thacher T, Gambillara V, da Silva RF, Silacci P, Stergiopulos N. Reduced cyclic stretch, endothelial dysfunction, and oxidative stress: an ex vivo model. Cardiovasc Pathol. 2010;19:91–8.

    Article  Google Scholar 

  81. Palombo C, Kozakova M. Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vasc Pharmacol. 2015;15:332–68.

    Google Scholar 

  82. Cardoso L, Kelly-Arnold A, Maldonado N, Laudier D, Weinbaum S. Effect of the tissue properties, shape and orientation of micro calcification on vulnerable cap stability using different hyperelastic constitutive models. J Biomech. 2014;47:870–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gronholdt ML, Nordestgaard BG, Bentzon J, Wiebe BM, Zhou J, Falk E, et al. Macrophages are associated with lipid-rich carotid artery plaques, echolucency on B-mode imaging, and elevated plasma lipid levels. J Vasc Surg. 2002;35:137–45.

    PubMed  Google Scholar 

  84. Packard RRS, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54:24–38.

    Article  CAS  PubMed  Google Scholar 

  85. Sehgel NL, Sun Z, Hong Z, Hunter WC, Hill MA, Vatner DE, et al. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension. 2015;65:370–7.

    Article  CAS  PubMed  Google Scholar 

  86. Pahkala K, Hernelahti M, Heinonen OJ, Raittinen P, Hakanen M, Lagström H, et al. Body mass index, fitness and physical activity from childhood through adolescence. Br J Sports Med. 2013;47:71–7.

    Article  PubMed  Google Scholar 

  87. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54:1328–36.

    Article  CAS  PubMed  Google Scholar 

  88. Miyamoto M, Kotani K, Okada K, Ando A, Hasegawa H, Kanai H, et al. Arterial wall elasticity measured using the phased tracking method and atherosclerotic risk factors in patients with type 2 diabetes. J Atheroscler Thromb. 2013;20:678–87.

    Article  PubMed  Google Scholar 

  89. • Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45:1050–5. The paper talks about biological factors responsible for arterial stiffness. This change in stiffness has association with the genetic components.

  90. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension. 2003;41:183–7.

    Article  CAS  PubMed  Google Scholar 

  91. Simons PC, Algra A, Bots ML, Grobbee DE, van der Graaf Y. Common carotid intima-media thickness and arterial stiffness indicators of cardiovascular risk in high-risk patients. Circulation. 1999;100:951–7.

    Article  CAS  PubMed  Google Scholar 

  92. Zahnd G, Orkisz M, Sérusclat A, Moulin P, Vray D. Simultaneous extraction of carotid artery intima-media interfacesin ultrasound images: assessment of wall thickness temporal variation during the cardiac cycle. Int J CARS. 2014;9:645–58.

    Article  Google Scholar 

  93. Niu L, Qian M, Song R, Meng L, Liu X, Zheng H. A texture matching method considering geometric transformations in noninvasive ultrasonic measurement of arterial elasticity. Ultrasound Med Biol. 2012;38:524–33.

    Article  PubMed  Google Scholar 

  94. Hasegawa H, Kanai H, Hoshimiya N, Koiwa Y. Evaluating the regional elastic modulus of a cylindrical shell with nonuniform wall thickness. J Med Ultrason. 2004;31:81–90.

    Article  Google Scholar 

  95. Pahkala K, Laitinen TT, Heinonen J, Viikari JSA, Rönnemaa T, Niinikoski H, et al. Association of fitness with vascular intima-media thickness and elasticity in adolescence. Pediatrics. 2013;132:77–84.

    Article  Google Scholar 

  96. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;4:505–11.

    Article  Google Scholar 

  97. Saba L, Meiburger KM, Molinari F, Ledda G, Anzidei M, Acharya UR, et al. Carotid IMT variability (IMTV) and its validation in symptomatic versus asymptomatic Italian population: can this be a useful index for studying symptomaticity? Echocardiography. 2012;29(9):1111–9.

    Article  PubMed  Google Scholar 

  98. Saba L, Banchhor SK, Suri HS, Londhe ND, Araki T, Ikeda N, et al. Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: a web-based point-of-care tool for multicenter clinical trial. Comput Biol Med. 2016;75:217–34.

    Article  PubMed  Google Scholar 

Download references

Contributions

Anoop K. Patel, MTech: Design of the manuscript pursing doctoral degree.

Harman S. Suri: Support in the design of the manuscript.

Jaskaran Singh, BTech: Support in the design of the manuscript.

Dinesh Kumar, PhD: Support in the design of the manuscript.

Shoaib Shafique, MD: Supported in clinical application and risk scores.

Andrew Nicolaides, PhD: Clinical advisor and discussions on carotid imaging.

Sanjay K. Jain, PhD: Advising and support in arranging information technology resources.

Luca Saba, MD: Clinical discussions and data collection.

Ajay Gupta, MD: Input in stroke and clinical component of the manuscript.

John R. Laird, MD: Clinical advisor for link between carotid and coronary.

Argiris Giannopoulos, MD; AVI carotid cine loop collection, demographics and library support.

Jasjit S. Suri, PhD, MBA, Fellow AIMBE: Principal Investigator of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasjit S. Suri.

Ethics declarations

Conflict of Interest

Jasjit S. Suri (PI of this project) has a relationship with AtheroPoint™, Roseville, CA, USA which is dedicated to Atherosclerosis Disease Management, including Stroke and Cardiovascular imaging.

Anoop K. Patel, Harman S. Suri, Jaskaran Singh, Dinesh Kumar, Shoaib Shafique, Andrew Nicolaides, Sanjay K. Jain, Luca Saba, Ajay Gupta, John R. Laird, and Argiris Giannopoulos declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Vascular Biology

Appendix A

Appendix A

$$ PWV = \frac{d}{t_2-{t}_1} = \frac{d}{\varDelta t}, $$
(1)

where d is the distance measured between carotid to femoral arterial sites.

$$ PWV=\sqrt{\frac{IMT \times {Y}_m}{2 \times \rho \times r}}. $$
(2)

Thus, Young’s elastic modulus Y m is expressed as:

$$ {Y}_m = \frac{\left(2 \times \rho \times r \times PW{V}^2\right)}{IMT} $$
(3)

where IMT Y m , ρ and r are intima-media thickness, YEM, density of fluid within the lumen and lumen radius, respectively.

$$ DD=\left(\frac{D_{\max }\ \hbox{--}\ {D}_{\min }}{D_{\min }}\right), $$
(4)

where D max is the maximum artery diameter and D min is the minimum artery diameter.

Peterson’s Elastic Module (E p ) can be expressed as:

$$ {E}_p = \frac{PP}{DD}, $$
(5)

where PP is the pulse pressure and DD is the as in Eq. (4).

$$ {\upsigma}_{\mathrm{cs}} = \frac{PP \times {D}_{min}}{2 \times IM{T}_{D_{min}}}, $$
(6)

where σcs is the circumferential stress, \( IM{T}_{D_{min}} \) is the IMT measured at the instance when arterial diameter was minimum in the far wall.

$$ {Y}_m = \frac{\mathrm{Stress}}{\mathrm{Strain}}=\frac{\upsigma_{\mathrm{cs}}}{DD}=\frac{\left[\frac{PP \times Dmin}{2 \times IM{T}_{D_{\min }}}\right]}{DD}=\left[\frac{PP}{DD}\right]\times \left[\frac{D_{\min }}{2\times IM{T}_{D_{\min }}}\right] $$
(7)

If \( {E}_p=\frac{PP}{DD} \) (Peterson’s elastic modulus), then Y m can be expressed in terms of Peterson’s elastic modulus (E p ) as:

$$ {Y}_m=\frac{E_p \times {D}_{\min }}{2 \times IM{T}_{D_{\min }}}. $$
(8)
$$ C{C}_r = \frac{\left({D}_{\max}^2 - {D}_{\min}^2\right)}{PP}. $$
(9)

Distensibility DIS can be represented as:

$$ DIS = \frac{D{D}_{sr}}{PP} = \frac{C{C}_r}{D_{\min}^2}, $$
(10)

where DD sr = \( \left[\frac{\left({D}_{\max}^2 - {D}_{\min}^2\right)}{D_{\min}^2}\right] \), PP is the pulse pressure; D max is the maximum diameter of artery and D min is the minimum diameter of artery.

$$ C{C}_v=\frac{\pi }{4PP}\times {L}_d\times \left({D}_s^2-{D}_d^2\right) + \frac{\pi }{4PP}\times {L}_d\times {D}_s^2\times \frac{\varDelta L}{L_d}. $$
(11)

where, \( \frac{\varDelta L}{L_d} \) is expressed in terms of IMT, LD and arterial compressibility. It is mathematically represented as in Eq. 12:

$$ \frac{\varDelta L}{L_d}=\left[\left(1-\delta \right)\times \frac{IM{T}_d \times \left({D}_d + IM{T}_d\right)}{IM{T}_s \times \left({D}_s + IM{T}_s\right)}\right]-1 $$
(12)

and L d , D s , D d , PP, δ, IMT d,  and IMT s are diastolic length of cylindrical artery, systolic diameter, diastolic diameter, pulse pressure, compressibility factor, diastolic IMT and systolic IMT, respectively. δ can be expressed as:

$$ \delta =1-\frac{V_s}{V_d}, $$
(13)

where V d  and V s is volume of vessel wall in diastole, systole, respectively. V s and V d can be computed using Eq. 14 as:

$$ \left\{\begin{array}{l}{V}_s = \pi \times {L}_s \times IM{T}_s \times \left[{D}_s + IM{T}_s\right]\hfill \\ {}{V}_d = \pi \times {L}_d\times IM{T}_d\times \left[{D}_d+IM{T}_d\right]\hfill \end{array}\right. $$
(14)

where L s is the systolic length of cylindrical artery, D s and D d are the diastolic and systolic diameter, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.K., Suri, H.S., Singh, J. et al. A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement. Curr Atheroscler Rep 18, 83 (2016). https://doi.org/10.1007/s11883-016-0635-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0635-9

Keywords

Navigation