Skip to main content

Advertisement

Log in

HDL: To Treat or Not To Treat?

  • Cardiovascular Disease and Stroke (P Perrone-Filardi and S. Agewall, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Several studies have shown an inverse relationship between HDL cholesterol (HDL-C) levels and the risk of cardiovascular disease. Low HDL-C levels are commonly present in subjects with diabetes, metabolic syndrome, or obesity. These observations have suggested that increasing HDL concentrations might help in decreasing the cardiovascular disease risk. However, despite initial positive results, some recent data from clinical trials with HDL-raising therapies failed to confirm this hypothesis; in addition, data from Mendelian randomization analyses showed that nucleotide polymorphisms associated with increased HDL-C levels did not decrease the risk of myocardial infarction, further challenging the concept that higher HDL-C levels will automatically translate into lower cardiovascular disease risk. Differences in the quality and distribution of HDL particles might partly explain these findings, and in agreement with this hypothesis, some observations have suggested that HDL subpopulation levels may be better predictors of cardiovascular disease than simple HDL-C levels. Thus, it is expected that increased HDL-C levels may be beneficial when associated with an improvement in HDL function, suggesting that pharmacological approaches able to correct or increase HDL functions might produce more reliable clinical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schwartz GG. High-density lipoprotein cholesterol as a risk factor and target of therapy after acute coronary syndrome. Am J Cardiol. 2009;104(10 Suppl):46E–51.

    Article  CAS  PubMed  Google Scholar 

  2. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  3. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986;256(20):2835–8.

    Article  CAS  PubMed  Google Scholar 

  4. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325(6):373–81.

    Article  CAS  PubMed  Google Scholar 

  5. Goldbourt U, Yaari S, Medalie JH. Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality. A 21-year follow-up of 8000 men. Arterioscler Thromb Vasc Biol. 1997;17(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  6. Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis. 1996;124(Suppl):S11–20.

    Article  CAS  PubMed  Google Scholar 

  7. Pirillo A, Norata GD, Catapano AL. High-density lipoprotein subfractions–what the clinicians need to know. Cardiology. 2013;124(2):116–25.

    Article  CAS  PubMed  Google Scholar 

  8. Pirillo A, Norata GD, Catapano AL. Treating high density lipoprotein cholesterol (HDL-C): quantity versus quality. Curr Pharm Des. 2013;19(21):3841–57. This review extensively evaluated the differences between changes in HDL quantity and/or HDL function and their significance in CVD. Furthermore, the therapeutic approaches targeting HDL-C levels or HDL functions were discussed.

    Article  CAS  PubMed  Google Scholar 

  9. Norata GD, Pirillo A, Catapano AL. HDLs, immunity, and atherosclerosis. Curr Opin Lipidol. 2011;22(5):410–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sala F, Catapano AL, Norata GD. High density lipoproteins and atherosclerosis: emerging aspects. J Geriatr Cardiol. 2012;9(4):401–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. This study showed that genetic variants determining higher HDL-C levels are not associated with a decrease in the risk of myocardial infarction, thus challenging the “HDL hypothesis.”.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  PubMed  Google Scholar 

  13. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  14. Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2001;104(10):1108–13.

    Article  CAS  PubMed  Google Scholar 

  15. Walldius G, Aastveit AH, Jungner I. Stroke mortality and the apoB/apoA-I ratio: results of the AMORIS prospective study. J Intern Med. 2006;259(3):259–66.

    Article  CAS  PubMed  Google Scholar 

  16. Third report of the National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  17. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357(13):1301–10.

    Article  CAS  PubMed  Google Scholar 

  18. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006;47(6):1093–100.

    Article  CAS  PubMed  Google Scholar 

  19. Toth PP, Zarotsky V, Sullivan JM, Laitinen D. Dyslipidemia treatment of patients with diabetes mellitus in a US managed care plan: a retrospective database analysis. Cardiovasc Diabetol. 2009;8:26.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383–9.

    Google Scholar 

  21. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

    Article  Google Scholar 

  22. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339(19):1349–57.

    Article  Google Scholar 

  23. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996;335(14):1001–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med. 1995;333(20):1301–7.

    Article  CAS  PubMed  Google Scholar 

  25. Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. JAMA. 1998;279(20):1615–22.

    Article  CAS  PubMed  Google Scholar 

  26. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.

    Article  CAS  PubMed  Google Scholar 

  27. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease—the Framingham heart study. Can J Cardiol. 1988;4(Suppl A):5A–10.

    PubMed  Google Scholar 

  28. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med. 1999;341(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  29. The BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102(1):21–7.

    Article  Google Scholar 

  30. Ginsberg HN, Elam MB, Lovato LC, Crouse 3rd JR, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Article  PubMed  Google Scholar 

  31. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237–45.

    Article  CAS  PubMed  Google Scholar 

  32. Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8(6):1245–55.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor AJ, Villines TC, Stanek EJ, Devine PJ, Griffen L, Miller M, et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med. 2009;361(22):2113–22.

    Article  CAS  PubMed  Google Scholar 

  34. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323(19):1289–98.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor AJ, Lee HJ, Sullenberger LE. The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3. Curr Med Res Opin. 2006;22(11):2243–50.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation. 2004;110(23):3512–7.

    Article  CAS  PubMed  Google Scholar 

  37. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.

    Article  CAS  PubMed  Google Scholar 

  38. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  39. Barter P. Lessons learned from the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial. Am J Cardiol. 2009;104(10 Suppl):10E–5.

    Article  CAS  PubMed  Google Scholar 

  40. Stroes ES, Kastelein JJ, Benardeau A, Kuhlmann O, Blum D, Campos LA, et al. Dalcetrapib: no off-target toxicity on blood pressure or on genes related to the renin-angiotensin-aldosterone system in rats. Br J Pharmacol. 2009;158(7):1763–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lamon-Fava S, Diffenderfer MR, Barrett PH, Buchsbaum A, Nyaku M, Horvath KV, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28(9):1672–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kamanna VS, Kashyap ML. Nicotinic acid (niacin) receptor agonists: will they be useful therapeutic agents? Am J Cardiol. 2007;100(11 A):S53–61.

    Article  PubMed  Google Scholar 

  43. Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003;9(3):352–5.

    Article  CAS  PubMed  Google Scholar 

  44. Birjmohun RS, Kastelein JJ, Poldermans D, Stroes ES, Hostalek U, Assmann G. Safety and tolerability of prolonged-release nicotinic acid in statin-treated patients. Curr Med Res Opin. 2007;23(7):1707–13.

    Article  CAS  PubMed  Google Scholar 

  45. Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99(6A):22C–31.

    Article  CAS  PubMed  Google Scholar 

  46. Maccubbin D, Koren MJ, Davidson M, Gavish D, Pasternak RC, Macdonell G, et al. Flushing profile of extended-release niacin/laropiprant versus gradually titrated niacin extended-release in patients with dyslipidemia with and without ischemic cardiovascular disease. Am J Cardiol. 2009;104(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  47. Paolini JF, Mitchel YB, Reyes R, Kher U, Lai E, Watson DJ, et al. Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am J Cardiol. 2008;101(5):625–30.

    Article  CAS  PubMed  Google Scholar 

  48. HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34(17):1279–91.

    Article  PubMed Central  Google Scholar 

  49. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  PubMed  Google Scholar 

  50. Edmondson AC, Brown RJ, Kathiresan S, Cupples LA, Demissie S, Manning AK, et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Investig. 2009;119(4):1042–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ray KK, Cannon CP, Cairns R, Morrow DA, Ridker PM, Braunwald E. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2009;29(3):424–30.

    Article  CAS  PubMed  Google Scholar 

  53. Ridker PM, Genest J, Boekholdt SM, Libby P, Gotto AM, Nordestgaard BG, et al. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet. 2010;376(9738):333–9.

    Article  CAS  PubMed  Google Scholar 

  54. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, et al. Treating to new targets I: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357(13):1301–10.

    Article  CAS  PubMed  Google Scholar 

  55. van de Woestijne AP, van der Graaf Y, Liem AH, Cramer MJ, Westerink J, Visseren FL. Low high-density lipoprotein cholesterol is not a risk factor for recurrent vascular events in patients with vascular disease on intensive lipid-lowering medication. J Am Coll Cardiol. 2013;62(20):1834–41. This prospective cohort study showed that in patients treated with the usual doses of lipid-lowering drugs, a 0.1 mmol/L increase in HDL-C concentration resulted in 5 % reduction in the risk of cardiovascular events. In contrast, in patients treated with intensive lipid-lowering therapy, low HDL-C levels were not associated with the recurrence of vascular events (myocardial infarction, stroke, or vascular death).

    Article  PubMed  Google Scholar 

  56. Jafri H, Alsheikh-Ali AA, Karas RH. Meta-analysis: statin therapy does not alter the association between low levels of high-density lipoprotein cholesterol and increased cardiovascular risk. Ann Intern Med. 2010;153(12):800–8.

    Article  PubMed  Google Scholar 

  57. Acharjee S, Boden WE, Hartigan PM, Teo KK, Maron DJ, Sedlis SP, et al. Low levels of high-density lipoprotein cholesterol and increased risk of cardiovascular events in stable ischemic heart disease patients: a post-hoc analysis from the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation). J Am Coll Cardiol. 2013;62(20):1826–33. This post hoc analysis showed a significant relationship between low HDL-C levels and increased cardiovascular risk: among patients with stable ischemic heart disease, those in the highest HDL-C quintile had a significant reduction in the incidence of cardiovascular events compared with those in the lowest quintile.

  58. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96(12):1221–32.

    Article  CAS  PubMed  Google Scholar 

  59. Parini P, Rudel LL. Is there a need for cholesteryl ester transfer protein inhibition? Arterioscler Thromb Vasc Biol. 2003;23(3):374–5.

    Article  CAS  PubMed  Google Scholar 

  60. Rader DJ. Illuminating HDL—is it still a viable therapeutic target? N Engl J Med. 2007;357(21):2180–3.

    Article  CAS  PubMed  Google Scholar 

  61. Forrest MJ, Bloomfield D, Briscoe RJ, Brown PN, Cumiskey AM, Ehrhart J, et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br J Pharmacol. 2008;154(7):1465–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Luscher TF, Taddei S, Kaski JC, Jukema JW, Kallend D, Munzel T, et al. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J. 2012;33(7):857–65.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Otvos JD. The surprising AIM-HIGH results are not surprising when viewed through a particle lens. J Clin Lipidol. 2011;5(5):368–70.

    Article  PubMed  Google Scholar 

  65. Airan-Javia SL, Wolf RL, Wolfe ML, Tadesse M, Mohler E, Reilly MP. Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low- and high-dose simvastatin monotherapy. Am Heart J. 2009;157(4):687–e681-8.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113(12):1556–63.

    Article  CAS  PubMed  Google Scholar 

  67. Krauss RM, Wojnooski K, Orr J, Geaney JC, Pinto CA, Liu Y, et al. Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. J Lipid Res. 2012;53(3):540–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang SP, Daniels E, Chen Y, Castro-Perez J, Zhou H, Akinsanya KO, et al. In vivo effects of anacetrapib on prebeta HDL: improvement in HDL remodeling without effects on cholesterol absorption. J Lipid Res. 2013;54(10):2858–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yvan-Charvet L, Kling J, Pagler T, Li H, Hubbard B, Fisher T, et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler Thromb Vasc Biol. 2010;30(7):1430–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108(22):2751–6.

    Article  CAS  PubMed  Google Scholar 

  71. van der Steeg WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, Stroes ES, et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol. 2008;51(6):634–42.

    Article  PubMed  Google Scholar 

  72. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Costacou T, Evans RW, Orchard TJ. High-density lipoprotein cholesterol in diabetes: is higher always better? J Clin Lipidol. 2011;5(5):387–94.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Norata GD, Ballantyne CM, Catapano AL. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J. 2013;34(24):1783–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. D'Souza W, Stonik JA, Murphy A, Demosky SJ, Sethi AA, Moore XL, et al. Structure/function relationships of apolipoprotein A-I mimetic peptides: implications for antiatherogenic activities of high-density lipoprotein. Circ Res. 2010;107(2):217–27.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Norata GD, Sala F, Catapano AL, Fernandez-Hernando C. MicroRNAs and lipoproteins: a connection beyond atherosclerosis? Atherosclerosis. 2013;227(2):209–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Norata GD, Tibolla G, Catapano AL. Gene silencing approaches for the management of dyslipidaemia. Trends Pharmacol Sci. 2013;34(4):198–205. This review evaluated the effects of recent gene silencing approaches as new strategies for the management of dyslipidemia.

    Article  CAS  PubMed  Google Scholar 

  78. Vazquez E, Sethi AA, Freeman L, Zalos G, Chaudhry H, Haser E, et al. High-density lipoprotein cholesterol efflux, nitration of apolipoprotein A-I, and endothelial function in obese women. Am J Cardiol. 2012;109(4):527–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Moriyama Y, Okamura T, Inazu A, Doi M, Iso H, Mouri Y, et al. A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev Med. 1998;27(5 Pt 1):659–67.

    Article  CAS  PubMed  Google Scholar 

  80. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A. Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation. 2000;101(16):1907–12.

    Article  CAS  PubMed  Google Scholar 

  81. Hirano K, Yamashita S, Nakajima N, Arai T, Maruyama T, Yoshida Y, et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol. 1997;17(6):1053–9.

    Article  CAS  PubMed  Google Scholar 

  82. Regieli JJ, Jukema JW, Grobbee DE, Kastelein JJ, Kuivenhoven JA, Zwinderman AH, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J. 2008;29(22):2792–9.

    Article  CAS  PubMed  Google Scholar 

  83. Vasan RS, Pencina MJ, Robins SJ, Zachariah JP, Kaur G, D'Agostino RB, et al. Association of circulating cholesteryl ester transfer protein activity with incidence of cardiovascular disease in the community. Circulation. 2009;120(24):2414–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Sirtori CR, Calabresi L, Franceschini G, Baldassarre D, Amato M, Johansson J, et al. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda Study. Circulation. 2001;103(15):1949–54.

    Article  CAS  PubMed  Google Scholar 

  85. Manninen V, Tenkanen L, Koskinen P, Huttunen JK, Manttari M, Heinonen OP, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation. 1992;85(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  86. Scott R, O'Brien R, Fulcher G, Pardy C, D'Emden M, Tse D, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Lavigne PM, Karas RH. The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression. J Am Coll Cardiol. 2013;61(4):440–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Angela Pirillo, Gianpaolo Tibolla, and Giuseppe Danilo Norata declare that they have no conflict of interest. Alberico Luigi Catapano has received personal fees from AstraZeneca, Angen, and Aegerion, grants from Eli-Lilly, Mediolanum, Sanofi, Rottapharm, and Recordati, and grants and personal fees from Genzyme and Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberico Luigi Catapano.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirillo, A., Tibolla, G., Norata, G.D. et al. HDL: To Treat or Not To Treat?. Curr Atheroscler Rep 16, 429 (2014). https://doi.org/10.1007/s11883-014-0429-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0429-x

Keywords

Navigation