Skip to main content
Log in

Influence of the DASH diet and other low-fat, high-carbohydrate diets on blood pressure

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The Dietary Approaches to Stop Hypertension (DASH) and DASH-sodium trials were controlled feeding dietary trials that lowered blood pressure in the absence of weight loss. The beneficial aspect of DASH appears to be the low saturated fat content (<7%). Sodium restriction added additional blood pressure lowering to the low saturated fat DASH diet. Sodium restriction was more effective with increasing age and more effective than increasing fruit and vegetable content. When achievement of sodium restriction, exercise, and weight loss goals were reached in the outpatient setting with subjects making their own food choices (as in the PREMIER study), adding the DASH diet with an average fruit and vegetable intake of 7.8 servings daily had no additional benefit in those younger than 50 years of age or in ethnic/gender subgroups, but did have a benefit for the total group older than age 50 years. Because many hypertensive subjects are overweight, hypocaloric versions of DASH geared toward weight loss are appropriate. Mechanisms for dietary beneficial effects are related to inflammation and insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kearney PM, Whelton M, Reynolds K, et al.: Global burden of hypertension: analysis of worldwide data. Lancet 2005, 365:217–223.

    PubMed  Google Scholar 

  2. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003, 289:2560–2572.

  3. Lewington S, Clarke R, Qizilbash N, et al.: Age-specific relevance of usual blood pressure to vascular mortality. Lancet 2002, 360:1903–1913.

    Article  PubMed  Google Scholar 

  4. Neal B, MacMahon S, Chapman N: Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs. Lancet 2000, 356:1955–1964.

    Article  PubMed  CAS  Google Scholar 

  5. Cook NR, Cohen J, Hebert PR, et al.: Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med 1994, 155:701–709.

    Article  Google Scholar 

  6. MacMahon S, Peto R, Cutler J, et al.: Blood pressure, stroke, and coronary heart disease. Lancet 1990, 335:765–774.

    Article  PubMed  CAS  Google Scholar 

  7. August P: Initial treatment of hypertension. N Engl J Med 2003, 348:610–617.

    Article  PubMed  Google Scholar 

  8. Craddick SR, Elmer PJ, Obarzanek E, et al.: The DASH diet and blood pressure. Curr Atheroscler Rep 2003, 5:484–491.

    PubMed  Google Scholar 

  9. Appel LJ, Moore TJ, Obarzanek E, et al.: A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997, 336:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  10. Sacks FM, Svetkey LP, Vollmer WM, et al.: Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med 2001, 344:3–10.

    Article  PubMed  CAS  Google Scholar 

  11. Bray GA, Vollmer WM, Sacks FM, et al.: A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial. Am J Cardiol 2004, 94:222–227.

    Article  PubMed  CAS  Google Scholar 

  12. Svetkey LP, Simons-Morton DG, Proschan MA, et al.: Effect of the dietary approaches to stop hypertension diet and reduced sodium intake on blood pressure control. J Clin Hypertens 2004, 6:373–381.

    Google Scholar 

  13. Ard JD, Coffman CJ, Lin PH, Svetkey LP: One-year follow-up study of blood pressure and dietary patterns in dietary approaches to stop hypertenion (DASH) — sodium participants. Am J Hypertens 2004, 17:1156–1162.

    Article  PubMed  Google Scholar 

  14. Writing Group of the PREMIER Collaborative Research Group: Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA 2003, 289:2083–2093.

    Article  Google Scholar 

  15. Svetkey LP, Erlinger TP, Vollmer WM, et al.: Effect of lifestyle modifications on blood pressure by race, sex, hypertension status and age. J Hum Hypertens 2005, 19:21–31.

    Article  PubMed  CAS  Google Scholar 

  16. Nowson CA, Worsley A, Margerison C, et al.: Blood pressure response to dietary modifications in free-living individuals. J Nutr 2004, 134:2322–2329.

    PubMed  CAS  Google Scholar 

  17. Nowson CA, Worsley A, Margerison C, et al.: Blood pressure change with weight loss is affected by diet type in men. Am J Clin Nutr 2005, 81:983–989.

    PubMed  CAS  Google Scholar 

  18. Miller ER, Erlinger TP, Young DR, et al.: Results of the Diet, Exercise, and Weight Loss Intervention Trial (DEW-IT). Hypertension 2002, 40:612–618.

    Article  PubMed  CAS  Google Scholar 

  19. Roberts CK, Vaziri ND, Barnard RJ: Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability. Circulation 2002, 106:2530–2532.

    Article  PubMed  CAS  Google Scholar 

  20. Moore LL, Singer MR, Bradlee ML, et al.: Intake of fruits, vegetables and dairy products in early childhood and subsequent blood pressure change. Epidemiology 2005, 16:4–11.

    Article  PubMed  Google Scholar 

  21. Kokkinos P, Panagiotakos DB, Polychronopoulos E: Dietary influences on blood pressure: the effect of the Mediterranean Diet on the prevalence of hypertension. J Clin Hypertens 2005, 7:165–170.

    CAS  Google Scholar 

  22. Psaltopoulou T, Naska A, Orfanos P, et al.: Olive oil, the Mediterranean diet, and arterial blood pressure: the Greek European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 2004, 80:1012–1018.

    PubMed  CAS  Google Scholar 

  23. Panagiotakos DB, Pitsavos CH, Chrysohoou C, et al.: Status and management of hypertension in Greece: role of the adoption of a Mediterranean diet: the Attica study. J Hypertens 2003, 21:1–7.

    Article  Google Scholar 

  24. DeLorgeril M, Salen P, Martin JL, et al.: Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction. Final Report of the Lyon Diet Heart Study. Circulation 1999, 99:779–785.

    CAS  Google Scholar 

  25. Whelton PK, He J, Cutler JA, et al.: Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277:1624–1632.

    Article  PubMed  CAS  Google Scholar 

  26. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA 1992, 267:1213–1220.

  27. Allender PS, Cutler JA, Follmann D, et al.: Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials. Ann Intern Med 1996, 124:825–831.

    PubMed  CAS  Google Scholar 

  28. Jee SH, Miller ER 3rd, Guallar E, et al.: The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. Am J Hypertens 2002, 15(8):691–696.

    Article  PubMed  CAS  Google Scholar 

  29. Most MM: Estimated phytochemical content of the dietary approaches to stop hypertension (DASH) diet is higher than in the Control Study Diet. J Am Diet Assoc 2004, 104:1725–1727.

    Article  PubMed  Google Scholar 

  30. Ard JD, Grambow SC, Liu D, et al.: PREMIER study. The effect of the PREMIER interventions on insulin sensitivity. Diabetes Care 2004, 27:340–347.

    Article  PubMed  Google Scholar 

  31. Lopes HF, Martin KL, Nashar K, et al.: DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003, 41:422–430.

    Article  PubMed  CAS  Google Scholar 

  32. Miller ER III, Appel LJ, Risby TH: Effect of dietary patterns on measures of lipid peroxidation: results from a randomized clinical trial. Circulation 1998, 98:2390–2395.

    PubMed  CAS  Google Scholar 

  33. Cho H, Mu J, Kim JK, et al.: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001, 292:1728–1731.

    Article  PubMed  CAS  Google Scholar 

  34. Dandona P, Aljada A, Mohanty P: The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia 2002, 45:924–930.

    Article  PubMed  CAS  Google Scholar 

  35. Dandona P, Aljada A, Mohanty P, et al.: Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001, 86:3257–3265.

    Article  PubMed  CAS  Google Scholar 

  36. Wang S, Leonard SS, Castranova V, et al.: The role of superoxide radical in TNF-alpha induced NF-kappaB activation. Ann Clin Lab Sci 1999, 29:192–199.

    PubMed  CAS  Google Scholar 

  37. Mohanty P, Hamouda W, Garg R, et al.: Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 2000, 85:2970–2973.

    Article  PubMed  CAS  Google Scholar 

  38. Takebayashi K, Aso Y, Inukai T: Initiation of insulin therapy reduces serum concentrations of high-sensitivity C-reactive protein in patients with type 2 diabetes. Metabolism 2004, 53:693–699.

    Article  PubMed  CAS  Google Scholar 

  39. Stentz FB, Umpierrez GE, Cuervo R, et al.: Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes 2004, 53:2079–2086.

    Article  PubMed  CAS  Google Scholar 

  40. Emanuelli B, Peraldi P, Filloux C, et al.: SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 2001, 276:47944–47949.

    PubMed  CAS  Google Scholar 

  41. Rui L, Yuan M, Frantz D, et al.: SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002, 277:42394–42398.

    Article  PubMed  CAS  Google Scholar 

  42. Hotamisligil GS, Shargill NS, Spiegelman BM: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993, 259:87–91.

    Article  PubMed  CAS  Google Scholar 

  43. Aljada A, Ghanim H, Mohanty P, et al.: Glucose intake induces an increase in AP-1 and Egr-1 binding activities and tissue factor and matrix metalloproteinase expressions in mononuclear cells and plasma tissue factor and matrix metalloproteinase concentrations. Am J Clin Nutr 2004, 80:51–57.

    PubMed  CAS  Google Scholar 

  44. Mohanty P, Ghanim H, Hamouda W, et al.: Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 2002, 75:767–772.

    PubMed  CAS  Google Scholar 

  45. Aljada A, Mohanty P, Ghanim H, et al.: Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am J Clin Nutr 2004, 79:682–690.

    PubMed  CAS  Google Scholar 

  46. Mohanty P, Daoud N, Ghanim H, et al.: Absence of oxidative stress and inflammation following the intake of a 900 kcalorie meal rich in fruit and fiber. Diabetes 2004, 53:A405.

    Google Scholar 

  47. Dandona P, Mohanty P, Ghanim H, et al.: The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 2001, 86:355–362.

    Article  PubMed  CAS  Google Scholar 

  48. Dandona P, Mohanty P, Hamouda W, et al.: Inhibitory effect of a two day fast on reactive oxygen species (ROS) generation by leucocytes and plasma ortho-tyrosine and meta-tyrosine concentrations. J Clin Endocrinol Metab 2001, 86:2899–2902.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delichatsios, H.K., Welty, F.K. Influence of the DASH diet and other low-fat, high-carbohydrate diets on blood pressure. Curr Atheroscler Rep 7, 446–454 (2005). https://doi.org/10.1007/s11883-005-0061-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-005-0061-x

Keywords

Navigation