Skip to main content

Advertisement

Log in

Mast cell modulation of the immune response

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Mast cells are present in nearly all vascularized tissues, but not the blood. They are best known for the prominent role they play in atopic disease. However, our current understanding of their direct and indirect roles in the immune response offers a more nuanced picture of both villain and hero. Although they are implicated in many inflammatory disorders, they also defend us from bacterial pathogens, prevent dangerous overreactions by the immune system, and even protect us from snake venom. Perhaps there is more to these maligned cells than we thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chen CC, Grimbaldeston MA, Tsai M, et al.: Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci U S A 2005, 102:11408–11413.

    Article  PubMed  CAS  Google Scholar 

  2. Huff JJR: Biology of mast cells. In Middleton’s Allergy Principles and Practices, edn 6, vol 1. Edited by Franklin N, Adkinson JWY, Busse WW, et al. St. Louis, MO: Mosby; 2003:333–359.

    Google Scholar 

  3. Metcalfe DD, Baram D, Mekori YA: Mast cells. Physiol Rev 1997, 77:1033–1079.

    PubMed  CAS  Google Scholar 

  4. Sayed BA, Christy A, Quirion MR, Brown MA: The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 2008, 26:705–739.

    Article  PubMed  CAS  Google Scholar 

  5. Galli SJ, Nakae S, Tsai M: Mast cells in the development of adaptive immune responses. Nat Immunol 2005, 6:135–142.

    Article  PubMed  CAS  Google Scholar 

  6. Galli SJ, Kalesnikoff J, Grimbaldeston MA, et al.: Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005, 23:749–786.

    Article  PubMed  CAS  Google Scholar 

  7. Malveaux FJ, Conroy MC, Adkinson NF Jr, Lichtenstein LM: IgE receptors on human basophils. Relationship to serum IgE concentration. J Clin Invest 1978, 62:176–181.

    Article  PubMed  CAS  Google Scholar 

  8. Ryan JJ, Kashyap M, Bailey D, et al.: Mast cell homeostasis: a fundamental aspect of allergic disease. Crit Rev Immunol 2007, 27:15–32.

    PubMed  CAS  Google Scholar 

  9. Kalesnikoff J, Galli SJ: New developments in mast cell biology. Nat Immunol 2008, 9:1215–1223.

    Article  PubMed  CAS  Google Scholar 

  10. Saxon A, Kepley C, Zhang K: “Accentuate the negative, eliminate the positive”: engineering allergy therapeutics to block allergic reactivity through negative signaling. J Allergy Clin Immunol 2008, 121:320–325.

    Article  PubMed  CAS  Google Scholar 

  11. Rivera J, Gilfillan AM: Molecular regulation of mast cell activation. J Allergy Clin Immunol 2006, 117:1214–1225; quiz 1226.

    Article  PubMed  CAS  Google Scholar 

  12. Kraft S, Kinet JP: New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007, 7:365–378.

    Article  PubMed  CAS  Google Scholar 

  13. Gilfillan AM, Rivera J: The tyrosine kinase network regulating mast cell activation. Immunol Rev 2009, 228:149–169.

    Article  PubMed  Google Scholar 

  14. Yamashita Y, Charles N, Furumoto Y, et al.: Cutting edge: genetic variation influences Fc epsilonRI-induced mast cell activation and allergic responses. J Immunol 2007, 179:740–743.

    PubMed  CAS  Google Scholar 

  15. Furumoto Y, Gonzalez-Espinosa C, Gomez G, et al.: Rethinking the role of Src family protein tyrosine kinases in the allergic response: new insights on the functional coupling of the high affinity IgE receptor. Immunol Res 2004, 30:241–253.

    Article  PubMed  CAS  Google Scholar 

  16. Daeron M, Malbec O, Latour S, et al.: Regulation of tyrosine-containing activation motif-dependent cell signalling by Fc gamma RII. Immunol Lett 1995, 44:119–123.

    Article  PubMed  CAS  Google Scholar 

  17. Grimbaldeston MA, Metz M, Yu M, et al.: Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Curr Opin Immunol 2006, 18:751–760.

    Article  PubMed  CAS  Google Scholar 

  18. Galli SJ, Grimbaldeston M, Tsai M: Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 2008, 8:478–486.

    Article  PubMed  CAS  Google Scholar 

  19. Mazzoni A, Siraganian RP, Leifer CA, Segal DM: Dendritic cell modulation by mast cells controls the Th1/Th2 balance in responding T cells. J Immunol 2006, 177:3577–3581.

    PubMed  CAS  Google Scholar 

  20. Gregory GD, Raju SS, Winandy S, Brown MA: Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. J Clin Invest 2006, 116:1327–1336.

    Article  PubMed  CAS  Google Scholar 

  21. Yao Y, Li W, Kaplan MH, Chang CH: Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J Exp Med 2005, 201:1899–1903.

    Article  PubMed  CAS  Google Scholar 

  22. Kambayashi T, Baranski JD, Baker RG, et al.: Indirect involvement of allergen-captured mast cells in antigen presentation. Blood 2008, 111:1489–1496.

    Article  PubMed  CAS  Google Scholar 

  23. Shevach EM: From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006, 25:195–201.

    Article  PubMed  CAS  Google Scholar 

  24. Lu LF, Lind EF, Gondek DC, et al.: Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006, 442:997–1002.

    Article  PubMed  CAS  Google Scholar 

  25. Gri G, Piconese S, Frossi B, et al.: CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 2008, 29:771–781.

    Article  PubMed  CAS  Google Scholar 

  26. Kashyap M, Thornton AM, Norton SK, et al.: Cutting edge: CD4 T cell-mast cell interactions alter IgE receptor expression and signaling. J Immunol 2008, 180:2039–2043.

    PubMed  CAS  Google Scholar 

  27. Barnstein BO, Li G, Wang Z, et al.: Stat5 expression is required for IgE-mediated mast cell function. J Immunol 2006, 177:3421–3426.

    PubMed  CAS  Google Scholar 

  28. Boyce JA, Austen KF: No audible wheezing: nuggets and conundrums from mouse asthma models. J Exp Med 2005, 201:1869–1873.

    Article  PubMed  CAS  Google Scholar 

  29. Nakae S, Suto H, Berry GJ, Galli SJ: Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 2007, 109:3640–3648.

    Article  PubMed  CAS  Google Scholar 

  30. Rozniecki JJ, Hauser SL, Stein M, et al.: Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 1995, 37:63–66.

    Article  PubMed  CAS  Google Scholar 

  31. Tuomisto L, Kilpelainen H, Riekkinen P: Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions 1983, 13:255–257.

    Article  PubMed  CAS  Google Scholar 

  32. Lock C, Hermans G, Pedotti R, et al.: Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002, 8:500–508.

    Article  PubMed  CAS  Google Scholar 

  33. Dietsch GN, Hinrichs DJ: The role of mast cells in the elicitation of experimental allergic encephalomyelitis. J Immunol 1989, 142:1476–1481.

    PubMed  CAS  Google Scholar 

  34. Brenner T, Soffer D, Shalit M, Levi-Schaffer F: Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J Neurol Sci 1994, 122:210–213.

    Article  PubMed  CAS  Google Scholar 

  35. Levi-Schaffer F, Riesel N, Soffer D, et al.: Mast cell activity in experimental allergic encephalomyelitis. Mol Chem Neuropathol 1991, 15:173–184.

    Article  PubMed  CAS  Google Scholar 

  36. Secor VH, Secor WE, Gutekunst CA, Brown MA: Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 2000, 191:813–822.

    Article  PubMed  CAS  Google Scholar 

  37. Gregory GD, Robbie-Ryan M, Secor VH, et al.: Mast cells are required for optimal autoreactive T cell responses in a murine model of multiple sclerosis. Eur J Immunol 2005, 35:3478–3486.

    Article  PubMed  CAS  Google Scholar 

  38. Robbie-Ryan M, Tanzola MB, Secor VH, Brown MA: Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J Immunol 2003, 170:1630–1634.

    PubMed  CAS  Google Scholar 

  39. Tanzola MB, Robbie-Ryan M, Gutekunst CA, Brown MA: Mast cells exert effects outside the central nervous system to in uence experimental allergic encephalomyelitis disease course. J Immunol 2003, 171:4385–4391.

    PubMed  CAS  Google Scholar 

  40. McLachlan JB, Hart JP, Pizzo SV, et al.: Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 2003, 4:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  41. Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683–747.

    Article  PubMed  CAS  Google Scholar 

  42. Hart PH, Grimbaldeston MA, Swift GJ, et al.: Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 1998, 187:2045–2053.

    Article  PubMed  CAS  Google Scholar 

  43. Byrne SN, Limon-Flores AY, Ullrich SE: Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol 2008, 180:4648–4655.

    PubMed  CAS  Google Scholar 

  44. Depinay N, Hacini F, Beghdadi W, et al.: Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J Immunol 2006, 176:4141–4146.

    PubMed  CAS  Google Scholar 

  45. Grimbaldeston MA, Nakae S, Kalesnikoff J, et al.: Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 2007, 8:1095–1104.

    Article  PubMed  CAS  Google Scholar 

  46. Metz M, Piliponsky AM, Chen CC, et al.: Mast cells can enhance resistance to snake and honeybee venoms. Science 2006, 313:526–530.

    Article  PubMed  CAS  Google Scholar 

  47. Schneider LA, Schlenner SM, Feyerabend TB, et al.: Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J Exp Med 2007, 204:2629–2639.

    Article  PubMed  CAS  Google Scholar 

  48. Plaut M, Pierce JH, Watson CJ, et al.: Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature 1989, 339:64–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Ryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, J.J., Fernando, J.F. Mast cell modulation of the immune response. Curr Allergy Asthma Rep 9, 353–359 (2009). https://doi.org/10.1007/s11882-009-0052-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0052-z

Keywords

Navigation