Skip to main content
Log in

The role of chemokines in virus-associated asthma exacerbations

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma is a chronic disease characterized by mast cell activation, mucus hypersecretion, airway obstruction, influx and activation of eosinophils, and generation of a predominant T-helper type 2-based cytokine environment. In individuals with established asthma, acute exacerbations requiring hospitalization result primarily from pulmonary viral infection, such as with influenza, rhinovirus, or respiratory syncytial virus. The mechanism for viral exacerbation of the asthmatic response is unclear, but evidence points to a key role for chemokines, a class of cytokines that are important in leukocyte recruitment, inflammatory cell activation, and T-cell differentiation. In this review, we focus on the chemokines upregulated in acute viral-induced exacerbation and examine their role in promoting the virus-induced pathophysiologic response in asthmatic individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Strachan DP: Hay fever, hygiene, and household size. BMJ 1989, 299:1259–1260.

    PubMed  CAS  Google Scholar 

  2. Barends M, de Rond LG, Dormans J, et al.: Respiratory syncytial virus, pneumonia virus of mice, and influenza A virus differently affect respiratory allergy in mice. Clin Exp Allergy 2004, 34:488–496.

    Article  PubMed  CAS  Google Scholar 

  3. Sigurs N, Bjarnason R, Sigurbergsson F, et al.: Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: a prospective cohort study with matched controls. Pediatrics 1995, 95:500–505.

    PubMed  CAS  Google Scholar 

  4. Johnston SL, Bardin PG, Pattemore PK: Viruses as precipitants of asthma symptoms. III. Rhinoviruses: molecular biology and prospects for future intervention. Clin Exp Allergy 1993, 23:237–246.

    Article  PubMed  CAS  Google Scholar 

  5. Freymuth F, Vabret A, Brouard J, et al.: Detection of viral, Chlamydia pneumoniae and Mycoplasma pneumoniae infections in exacerbations of asthma in children. J Clin Virol 1999, 13:131–139.

    Article  PubMed  CAS  Google Scholar 

  6. Nicholson KG, Kent J, Ireland DC: Respiratory viruses and exacerbations of asthma in adults. BMJ 1993, 307:982–986.

    Article  PubMed  CAS  Google Scholar 

  7. Zhao J, Takamura M, Yamaoka A, et al.: Altered eosinophil levels as a result of viral infection in asthma exacerbation in childhood. Pediatr Allergy Immunol 2002, 13:47–50.

    Article  PubMed  Google Scholar 

  8. Osterholzer JJ, Ames T, Polak T, et al.: CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J Immunol 2005, 175:874–883.

    PubMed  CAS  Google Scholar 

  9. Zhu Z, Homer RJ, Wang Z, et al.: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999, 103:779–788.

    Article  PubMed  CAS  Google Scholar 

  10. Rothenberg ME: Eosinophilia. N Engl J Med 1998, 338:1592–1600.

    Article  PubMed  CAS  Google Scholar 

  11. Ying S, Meng Q, Zeibecoglou K, et al.: Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (intrinsic) asthmatics. J Immunol 1999, 163:6321–6329.

    PubMed  CAS  Google Scholar 

  12. Lukacs NW, Prosser DM, Wiekowski M, et al.: Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J Exp Med 2001, 194:551–555.

    Article  PubMed  CAS  Google Scholar 

  13. McIlroy A, Caron G, Blanchard S, et al.: Histamine and prostaglandin E up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-gamma-induced CXCL10 production by immature human dendritic cells. Immunology 2006, 117:507–516.

    Article  PubMed  CAS  Google Scholar 

  14. Ying S, O’Connor B, Ratoff J, et al.: Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005, 174:8183–8190.

    PubMed  CAS  Google Scholar 

  15. Karpus WJ, Lukacs NW, Kennedy KJ, et al.: Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 1997, 158:4129–4136.

    PubMed  CAS  Google Scholar 

  16. Bartlett NW, Walton RP, Edwards MR, et al.: Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 2008, 14:199–204.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarze J, Hamelmann E, Bradley KL, et al.: Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. J Clin Invest 1997, 100:226–233.

    Article  PubMed  CAS  Google Scholar 

  18. Lukacs NW, Tekkanat KK, Berlin A, et al.: Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms. J Immunol 2001, 167:1060–1065.

    PubMed  CAS  Google Scholar 

  19. Peebles RS Jr, Hashimoto K, Collins RD, et al.: Immune interaction between respiratory syncytial virus infection and allergen sensitization critically depends on timing of challenges. J Infect Dis 2001, 184:1374–1379.

    Article  PubMed  Google Scholar 

  20. Groskreutz DJ, Monick MM, Powers LS, et al.: Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J Immunol 2006, 176:1733–1740.

    PubMed  CAS  Google Scholar 

  21. Hewson CA, Jardine A, Edwards MR, et al.: Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol 2005, 79:12273–12279.

    Article  PubMed  CAS  Google Scholar 

  22. Rudd BD, Smit JJ, Flavell RA, et al.: Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J Immunol 2006, 176:1937–1942.

    PubMed  CAS  Google Scholar 

  23. Grunberg K, Timmers MC, Smits HH, et al.: Effect of experimental rhinovirus 16 colds on airway hyperresponsiveness to histamine and interleukin-8 in nasal lavage in asthmatic subjects in vivo. Clin Exp Allergy 1997, 27:36–45.

    Article  PubMed  CAS  Google Scholar 

  24. Wark PA, Johnston SL, Moric I, et al.: Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 2002, 19:68–75.

    Article  PubMed  CAS  Google Scholar 

  25. Newcomb DC, Sajjan US, Nagarkar DR, et al.: Cooperative effects of rhinovirus and TNF-{alpha} on airway epithelial cell chemokine expression. Am J Physiol Lung Cell Mol Physiol 2007, 293:L1021–L1028.

    Article  PubMed  CAS  Google Scholar 

  26. John AE, Berlin AA, Lukacs NW: Respiratory syncytial virus-induced CCL5/RANTES contributes to exacerbation of allergic airway inflammation. Eur J Immunol 2003, 33:1677–1685.

    Article  PubMed  CAS  Google Scholar 

  27. Niimi K, Asano K, Shiraishi Y, et al.: TLR3-mediated synthesis and release of eotaxin-1/CCL11 from human bronchial smooth muscle cells stimulated with doublestranded RNA. J Immunol 2007, 178:489–495.

    PubMed  CAS  Google Scholar 

  28. Calhoun WJ, Dick EC, Schwartz LB, et al.: A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. J Clin Invest 1994, 94:2200–2208.

    Article  PubMed  CAS  Google Scholar 

  29. Zambrano JC, Carper HT, Rakes GP, et al.: Experimental rhinovirus challenges in adults with mild asthma: response to infection in relation to IgE. J Allergy Clin Immunol 2003, 111:1008–1016.

    Article  PubMed  CAS  Google Scholar 

  30. Blease K, Mehrad B, Standiford TJ, et al.: Enhanced pulmonary allergic responses to Aspergillus in CCR2-/-mice. J Immunol 2000, 165:2603–2611.

    PubMed  CAS  Google Scholar 

  31. Koth LL, Rodriguez MW, Bernstein XL, et al.: Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2. Respir Res 2004, 5:12.

    Article  PubMed  CAS  Google Scholar 

  32. Kim Y, Sung S, Kuziel WA, et al.: Enhanced airway Th2 response after allergen challenge in mice deficient in CC chemokine receptor-2 (CCR2). J Immunol 2001, 166:5183–5192.

    PubMed  CAS  Google Scholar 

  33. MacLean JA, De Sanctis GT, Ackerman KG, et al.: CC chemokine receptor-2 is not essential for the development of antigen-induced pulmonary eosinophilia and airway hyperresponsiveness. J Immunol 2000, 165:6568–6575.

    PubMed  CAS  Google Scholar 

  34. Chiu BC, Freeman CM, Stolberg VR, et al.: Impaired lung dendritic cell activation in CCR2 knockout mice. Am J Pathol 2004, 165:1199–1209.

    PubMed  CAS  Google Scholar 

  35. Lundy SK, Lira SA, Smit JJ, et al.: Attenuation of allergeninduced responses in CCR6-/-mice is dependent upon altered pulmonary T lymphocyte activation. J Immunol 2005, 174:2054–2060.

    PubMed  CAS  Google Scholar 

  36. Farrell E, O’Connor TM, Duong M, et al.: Circulating myeloid and plasmacytoid dendritic cells after allergen inhalation in asthmatic subjects. Allergy 2007, 62:1139–1145.

    Article  PubMed  CAS  Google Scholar 

  37. Thomas SY, Banerji A, Medoff BD, et al.: Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol 2007, 179:1901–1912.

    PubMed  CAS  Google Scholar 

  38. Matsuse H, Behera AK, Kumar M, et al.: Recurrent respiratory syncytial virus infections in allergen-sensitized mice lead to persistent airway inflammation and hyperresponsiveness. J Immunol 2000, 164:6583–6592.

    PubMed  CAS  Google Scholar 

  39. Elliott MB, Tebbey PW, Pryharski KS, et al.: Inhibition of respiratory syncytial virus infection with the CC chemokine RANTES (CCL5). J Med Virol 2004, 73:300–308.

    Article  PubMed  CAS  Google Scholar 

  40. Blease K, Mehrad B, Standiford TJ, et al.: Airway remodeling is absent in CCR1-/-mice during chronic fungal allergic airway disease. J Immunol 2000, 165:1564–1572.

    PubMed  CAS  Google Scholar 

  41. Miller AL, Gerard C, Schaller M, et al.: Deletion of CCR1 attenuates pathophysiologic responses during respiratory syncytial virus infection. J Immunol 2006, 176:2562–2567.

    PubMed  CAS  Google Scholar 

  42. John AE, Gerard CJ, Schaller M, et al.: Respiratory syncytial virus-induced exaggeration of allergic airway disease is dependent upon CCR1-associated immune responses. Eur J Immunol 2005, 35:108–116.

    Article  PubMed  CAS  Google Scholar 

  43. Schaller MA, Kallal LE, Lukacs NW: A key role for CC chemokine receptor 1 in T-cell-mediated respiratory inflammation. Am J Pathol 2008, 172:386–394.

    Article  PubMed  Google Scholar 

  44. Monick MM, Powers LS, Hassan I, et al.: Respiratory syncytial virus synergizes with Th2 cytokines to induce optimal levels of TARC/CCL17. J Immunol 2007, 179:1648–1658.

    PubMed  CAS  Google Scholar 

  45. Wark PA, Bucchieri F, Johnston SL, et al.: IFN-gamma-induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations. J Allergy Clin Immunol 2007, 120:586–593.

    Article  PubMed  CAS  Google Scholar 

  46. Johnston SL, Pattemore PK, Sanderson G, et al.: Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ 1995, 310:1225–1229.

    PubMed  CAS  Google Scholar 

  47. Haynes LM, Moore DD, Kurt-Jones EA, et al.: Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 2001, 75:10730–10737.

    Article  PubMed  CAS  Google Scholar 

  48. Cohen L, Castro M: The role of viral respiratory infections in the pathogenesis and exacerbation of asthma. Semin Respir Infect 2003, 18:3–8.

    Article  PubMed  Google Scholar 

  49. Guillot L, Le Goffic R, Bloch S, et al.: Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 2005, 280:5571–5580.

    Article  PubMed  CAS  Google Scholar 

  50. Diebold SS, Kaisho T, Hemmi H, et al.: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303:1529–1531.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Lukacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallal, L.E., Lukacs, N.W. The role of chemokines in virus-associated asthma exacerbations. Curr Allergy Asthma Rep 8, 443–450 (2008). https://doi.org/10.1007/s11882-008-0084-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0084-9

Keywords

Navigation