Skip to main content

Advertisement

Log in

Pathophysiology of food-induced anaphylaxis

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Food-induced anaphylaxis is a steadily increasing problem in westernized countries and now represents the leading cause of anaphylaxis in the outpatient setting, particularly in children. Much of our knowledge of the pathophysiology of food-induced anaphylaxis comes from animal studies. Food anaphylaxis in humans is thought to be entirely IgE mediated. Several features appear to be unique to these reactions; factors such as exercise can lower the “threshold” for anaphylaxis in certain susceptible individuals. Different methods of thermal processing can modify the allergenicity of food proteins. Alteration of stomach pH can allow for incomplete digestion of food proteins, leading to increased absorption of intact food allergens. Low serum platelet-activating factor acetylhydrolase may predispose to fatal food-induced anaphylaxis. With a greater understanding of the pathophysiology of food-induced anaphylaxis, novel approaches not only to identify those at risk, but to treat and ultimately prevent food-induced anaphylaxis, are on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Sicherer SH, Sampson HA: Food allergy. J Allergy Clin Immunol 2006, 117:S470–S475.

    Article  PubMed  CAS  Google Scholar 

  2. Bock SA, Munoz-Furlong BA, Sampson HA: Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 2001, 107:191–193.

    Article  PubMed  CAS  Google Scholar 

  3. Wang J, Sampson HA: Food anaphylaxis. Clin Exp Allergy 2007, 37:651–660.

    Article  PubMed  CAS  Google Scholar 

  4. Keet CA, Wood RA: Food allergy and anaphylaxis. Immunol Allergy Clin North Am 2007, 27:193–212.

    Article  PubMed  Google Scholar 

  5. Simons FER, Chad ZH, Gold M: Real-time reporting of anaphylaxis in infants, children and adolescents by physicians involved in the Canadian Pediatric Surveillance Program [abstract]. J Allergy Clin Immunol 2002, 109:S181.

    Article  Google Scholar 

  6. Sampson HA, Munoz-Furlong A, Campbell RL, et al.: Second symposium on the definition of and management of anaphylaxis: summary report: Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J Allergy Clin Immunol 2006, 117:391–397.

    Article  PubMed  Google Scholar 

  7. Simons FER, Frew AJ, Ansotegui IJ, et al.: Risk assessment in anaphylaxis: current and future approaches. J Allergy Clin Immunol 2007, 120(Suppl):S2–S24.

    Article  PubMed  CAS  Google Scholar 

  8. Li XM, Schofield JD, Huang CK, et al.: A murine model of IgE-mediated cow’s milk hypersensitivity. J Allergy Clin Immunol 1999, 103:206–214.

    Article  PubMed  CAS  Google Scholar 

  9. Li XM, Serebrisky D, Lee SY, et al.: A murine model of peanut anaphylaxis: T-and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol 2000, 106:150–158.

    Article  PubMed  CAS  Google Scholar 

  10. Sun J, Arias K, Alvarez D, et al.: Impact of CD40 ligand, B cells and mast cells in peanut-induced anaphylactic responses. J Immunol 2007, 179:6696–6703.

    PubMed  CAS  Google Scholar 

  11. Leung DY, Sampson HA, Yunginger JW, et al.: Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med 2003, 348:986–993.

    Article  PubMed  CAS  Google Scholar 

  12. Finkelman FD: Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol 2007, 120:506–515.

    Article  PubMed  CAS  Google Scholar 

  13. Berin MC, Kiliaan AJ, Yang PC, et al.: Rapid transepithelial transport in rat jejunum: impact of sensitization and the hypersensitivity reaction. Gastroenterology 1997, 113:856–864.

    Article  PubMed  CAS  Google Scholar 

  14. Berin MC, Kiliaan AJ, Yang PC, et al.: The influence of mast cells on pathways on transepithelial antigen transport in rat intestine. J Immunol 1998, 161:2561–2566.

    PubMed  CAS  Google Scholar 

  15. Yang PC, Berin MC, Yu LC, et al.: Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (Fc epsilon RII). J Clin Invest 2000, 106:879–876.

    Article  PubMed  CAS  Google Scholar 

  16. Li H, Nowak-Wegrzyn A, Charlop-Powers, Z, et al.: Transcytosis of IgE-antigen complexes by CD23a in human intestinal epithelial cells and its role in food allergy. Gastroenterology 2006, 131:47–58.

    Article  PubMed  CAS  Google Scholar 

  17. Yano H, Kato Y, Matsuda T: Acute exercise induces gastrointestinal leakage of allergen in lysozyme-sensitized mice. Eur J Appl Physiol 2002, 87:358–364.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuo H, Morimoto K, Akaki T, et al.: Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise induced anaphylaxis. Clin Exp Allergy 2005, 35:461–466.

    Article  PubMed  CAS  Google Scholar 

  19. Palosuo K, Varjonen E, Nurkkala J, et al.: Transglutaminase-mediated cross-linking of a peptic fraction of θ-5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis. J Allergy Clin Immunol 2003, 111:1386–1392.

    Article  PubMed  CAS  Google Scholar 

  20. Untersmayr E, Bakos N, Scholl I, et al.: Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB J 2005, 19:656–658.

    PubMed  CAS  Google Scholar 

  21. Untersmayr E, Vestergaard H, Malling HJ, et al.: Incomplete digestion of codfish represents a risk factor for anaphylaxis in patients with allergy. J Allergy Clin Immunol 2007, 119:711–717.

    Article  PubMed  CAS  Google Scholar 

  22. Beyer K, Morrow E, Li XM, et al.: Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol 2001, 107:1077–1081.

    Article  PubMed  CAS  Google Scholar 

  23. Ogawa Y, Grant JA: Mediators of anaphylaxis. Immunol Allergy Clin North Am 2007, 27:249–260.

    Article  PubMed  Google Scholar 

  24. Pejler G, Abrink M, Wernersson M: Mast cell proteases. Adv Immunol 2007, 95:167–255.

    PubMed  CAS  Google Scholar 

  25. Kaliner M, Sigler R, Summers R, Shelhamer JH: Effects of infused histamine: analysis of the effects of H1 and H2 histamine receptor antagonists on cardiovascular and pulmonary responses. J Allergy Clin Immunol 1981, 68:365–371.

    Article  PubMed  CAS  Google Scholar 

  26. Heflin CR, Brewer KL, Hack JB, Meggs WJ: Heparin reverses anaphylactoid shock in a porcine model. Ann Emerg Med 2006, 48:190–193.

    Article  PubMed  Google Scholar 

  27. Cuss FM, Dixon CM, Barnes PJ: Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet 1996, 2:189–192.

    Google Scholar 

  28. Rodriguez-Roisin R, Félez MA, Chung KF, et al.: Platelet-activating factor causes ventilation-perfusion mismatch in humans. J Clin Invest 1994, 93:188–194.

    Article  PubMed  CAS  Google Scholar 

  29. Vadas P, Gold M, Perelman B, et al.: Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 2008, 358:28–35.

    Article  PubMed  CAS  Google Scholar 

  30. Lieberman P: Biphasic anaphylactic reactions. Ann Allergy Asthma Immunol 2005, 95:217–226.

    Article  PubMed  Google Scholar 

  31. Perskvist N, Edston E: Differential accumulation of pulmonary and mast cell-subsets and eosinophils between fatal anaphylaxis and asthma death: a post-mortem comparative study. Forensic Sci Int 2007, 169:43–49.

    Article  PubMed  CAS  Google Scholar 

  32. Yang PC, Berin MC, Yu L, Perdue MH: Mucosal pathophysiology and inflammatory changes in the late phase of the intestinal allergic reaction in the rat. Am J Pathol 2001, 158:681–690.

    PubMed  CAS  Google Scholar 

  33. Sampson HA, Mendelson L, Rosen JP: Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N Engl J Med 1992, 327:380–384.

    PubMed  CAS  Google Scholar 

  34. Sampson HA, Jolie PL: Increased plasma histamine concentrations after food challenges in children with atopic dermatitis. N Engl J Med 1984, 311:372–376.

    PubMed  CAS  Google Scholar 

  35. Caughey GH: Tryptase genetics and anaphylaxis. J Allergy Clin Immunol 2006, 117:1411–1414.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz LB, Irani A-MA, Roller K, et al.: Quantitation of histamine, tryptase and chymase in dispersed human T and TC mast cells. J Immunol 1987, 138:2611–2615.

    PubMed  CAS  Google Scholar 

  37. Scudamore CL, Thornton EM, McMillan L, et al.: Release of the mucosal mast cell granule chymase, rat mast cell protease-II, during anaphylaxis is associated with the rapid development of paracellular permeability to macromolecules in rat jejunum. J Exp Med 1995, 182:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  38. Kaliner M, Dyer J, Merlin S, et al.: Increased urine histamine and contrast media reaction. Invest Radiol 1984, 19:116–118.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou X, Buckley MG, Lau LC, et al.: Mast cell carboxypeptidase as a new clinical marker for anaphylaxis [abstract]. J Allergy Clin Immunol 2006, 117:S85.

    Article  Google Scholar 

  40. Pereria B, Venter C, Grundy J, et al.: Prevalence of sensitization to food allergens, reported adverse reactions to foods, food avoidance, and food hypersensitivity among teenagers. J Allergy Clin Immunol 2005, 116:884–892.

    Article  Google Scholar 

  41. Bock SA: Prospective appraisal of complaints of adverse reactions to foods in children in the first 3 years of life. Pediatrics 1987, 79:683–688.

    PubMed  CAS  Google Scholar 

  42. Shreffler WG, Beyer K, Tearina Chu TH, et al.: Microarray immunoassay: association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol 2004, 113:776–782.

    Article  PubMed  CAS  Google Scholar 

  43. Jarvinen K, Beyer K, Vila L, et al.: Specificity of IgE antibodies to sequential epitopes of hen’s egg ovomucoid as a marker for persistence of egg allergy. Allergy 2007, 62:758–765.

    Article  PubMed  CAS  Google Scholar 

  44. Gebhardt T, Gerhard R, Bedoui S, et al.: β2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur J Immunol 2005, 35:1124–1132.

    Article  PubMed  CAS  Google Scholar 

  45. Lieberman P: Use of epinephrine in the treatment of anaphylaxis. Curr Opin Allergy Clin Immunol 2003, 3:313–318.

    Article  PubMed  CAS  Google Scholar 

  46. Simons FE: First-aid treatment of anaphylaxis to food: focus on epinephrine. J Allergy Clin Immunol 2004, 113:837–844.

    PubMed  CAS  Google Scholar 

  47. Douglas DM, Sukenick E, Andrade WP, Brown JS: Biphasic systemic anaphylaxis: an inpatient and outpatient study. J Allergy Clin Immunol 1994, 93:977–985.

    Article  PubMed  CAS  Google Scholar 

  48. Stark BJ, Sullivan TJ: Biphasic and protracted anaphylaxis. J Allergy Clin Immunol 1986, 78:76–83.

    Article  PubMed  CAS  Google Scholar 

  49. Srivastava KD, Kattan JD, Zou ZM, et al.: The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of anaphylaxis. J Allergy Clin Immunol 2005, 115:171–178.

    Article  PubMed  Google Scholar 

  50. Sicherer SH, Sampson HA: Peanut allergy: emerging concepts and approaches for an apparent epidemic. J Allergy Clin Immunol 2007, 120:491–503.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adina K. Knight.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemon-Mulé, H., Nowak-Wegrzyn, A., Berin, C. et al. Pathophysiology of food-induced anaphylaxis. Curr Allergy Asthma Rep 8, 201–208 (2008). https://doi.org/10.1007/s11882-008-0034-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0034-6

Keywords

Navigation