Skip to main content

Advertisement

Log in

A genetic engineering strategy to eliminate peanut allergy

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Peanut allergy is an IgE-mediated hypersensitivity reaction with an increasing prevalence worldwide. Despite its seriousness, to date, there is no cure. Genetic engineering strategies can provide a solution. The post-transcriptional gene silencing (PTGS) model can be used effectively to knock out the production of allergenic proteins in peanut by specific degradation of the endogenous target messenger RNA (mRNA). Ara h 2, the most potent peanut allergenic protein, was selected as a model to demonstrate the feasibility of this concept. Transgenic peanut plants were produced via microprojectile-mediated transformation of peanut embryos using a plasmid construct, which contains a fragment of the coding region of Ara h 2 linked to an enhanced CaMV 35S constitutive promoter. Molecular analyses, including polymerase chain reaction and Southern blots, confirmed the presence of the stable integration of the Ara h 2 transgene into the peanut genome. Northern hybridization showed the expression of the Ara h 2 transgene in all vegetative tissues of the mature transgenic peanut plants, indicating the stable expression of the truncated Ara h 2 transgene throughout the development of the plants. It is, therefore, reasonable to expect that the truncated Ara h 2 transgene transcripts will be synthesized in the seeds and will trigger the specific degradation of endogenous Ara h 2 mRNA. The next step will be to grow the transgenic peanut plants to full maturity for seed production and to determine the level of allergen Ara h 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Molkhou P: Épidémiologie de l’allergie alimentaire. J et de Puériculture 2004, 17:249–253.

    Article  Google Scholar 

  2. Bock SA, Munoz-Furlong A, Sampson HA: Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 2001, 107:191–193.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor S: Chemistry and detection of food allergens. Food Technology 1992, 46:146–152.

    CAS  Google Scholar 

  4. Bock SA: The natural history of food sensitivity. J Allergy Clin Immunol 1982, 69:173–177.

    Article  PubMed  CAS  Google Scholar 

  5. Sicherer SH, Munoz-Furlong A, Burks AW, Sampson HA: Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J Allergy Clin Immunol 1999, 103:559–562.

    Article  PubMed  CAS  Google Scholar 

  6. Oppenheimer JJ, Nelson HS, Bock A, et al.: Treatment of peanut allergy with rush immunotherapy. J Allergy Clin Immunol 1992, 90:256–262.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson HS, Lahr J, Rule R, et al.: Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract. J Allergy Clin Immunol 1997, 6:744–751.

    Article  Google Scholar 

  8. Roy K, Mao HQ, Huang SK, Leong KW: Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Med 1999, 5:387–391.

    Article  PubMed  CAS  Google Scholar 

  9. Maleki SJ, Chung SY, Champagne ET, Raufman JP: The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol 2000, 106:763–768.

    Article  PubMed  CAS  Google Scholar 

  10. Beyer K, Morrow E, Xiu-Min L, et al.: Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol 2001, 107:1077–1081.

    Article  PubMed  CAS  Google Scholar 

  11. Leung DY, Sampson HA, Yunginger JW, et al.: Avon Longitudinal Study of Parents and Children Study Team. National Jewish Medical and Research Center, Denver, USA. N Engl J Med 2003, 348:986–993.

    Article  PubMed  CAS  Google Scholar 

  12. The Peanut Institute: Eating peanuts improves cardiovascular risk factors in healthy adults: benefits beyond consumption of good fats. http:/www.peanut-institute.org. Accessed September, 2004.

  13. Krishna TG, Pawar SE, Mitra R: Variation and inheritance of the arachin polypeptides of groundnut (Arachis hypogaea L.). Theor Appl Genet 1986, 73:82.

    Article  CAS  Google Scholar 

  14. Higgins TJV: Synthesis and regulation of major proteins in seeds. Annu Rev Plant Physiol 1984, 35:191–195.

    Article  CAS  Google Scholar 

  15. Clarke MC, Kilburn SA, Hourihane JO, et al.: Serological characteristics of peanut allergy. Clin Exp Allergy 1998, 28:1251–1257.

    Article  PubMed  CAS  Google Scholar 

  16. Kleber-Janke T, Crameri R, Appenzeller U, et al.: Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Appl Immunol 1999, 119:265–274.

    Article  CAS  Google Scholar 

  17. Koppelman SJ, Bruijnzeel-Koomen CA, Hessing M, De Jongh HH: Heat-induced conformational changes of Ara h1, a major peanut allergen, do not affect its allergenic properties. J Biol Chem 1999, 274:4770–4777.

    Article  PubMed  CAS  Google Scholar 

  18. Stanley JS, King N, Burks AW, et al.: Identification and mutational analysis of the immunodominant IgE binding epitopes of the peanut allergen Ara h2. Arch Bioch Biophys 1997, 342:244–253.

    Article  CAS  Google Scholar 

  19. Burks AW, Williams LW, Helm RM, et al.: Identification of a major peanut allergen, Ara hI, in patients with atopic dermatitis and positive peanut challenges. J Allergy Clin Immunol 1991, 88:172–179.

    Article  PubMed  CAS  Google Scholar 

  20. Burks AW, Cockrell G, Stanley JS, et al.: Recombinant peanut allergen Ara hI expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest 1995, 96:1715–1721.

    Article  PubMed  CAS  Google Scholar 

  21. Viquez OM, Konan NK, Dodo HW: Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Mol Immunol 2003, 40:565–571.

    Article  PubMed  CAS  Google Scholar 

  22. Koppelman SJ, Wensing M, Ertmann M, et al.: Relevance of Ara h 1, Ara h 2 and Ara h 3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h 2 is the most important peanut allergen. Clin Exp Allergy 2004, 34:583–590.

    Article  PubMed  CAS  Google Scholar 

  23. Burks AW, Williams LW, Connaughton C, et al.: Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 1992, 90:962–969.

    Article  PubMed  CAS  Google Scholar 

  24. Maleki SJ, Viquez O, Jacks T, et al.: The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. J Allergy Clin Immunol 2003, 112:190–195.

    Article  PubMed  CAS  Google Scholar 

  25. Viquez OM, Summer CG, Dodo HW: Isolation and molecular characterization of the first genomic clone of a major peanut allergen, Ara h 2. J Allergy Clin Immunol 2001, 107:713–717.This study provided information on the first genomic sequence of a peanut allergen gene in our laboratory. A fragment of this sequence is being used in our protocol to silence the peanut allergen Ara h 2.

    Article  PubMed  CAS  Google Scholar 

  26. Rabjohn P, Helm EM, Stanley JS, et al.: Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest 1999, 103:535–542.

    PubMed  CAS  Google Scholar 

  27. Viquez OM, Konan NK, Dodo HW: Genomic organization of peanut allergen gene, Ara h 3. Mol Immunol 2004, 41:1235–1240.

    Article  PubMed  CAS  Google Scholar 

  28. Dodo HW, Viquez OM, Maleki S, Konan K: cDNA clone of a putative peanut (Arachis hypogaea L.) trypsin inhibitor has homology with peanut allergens Ara h 3 and Ara h 4. J Agric Food Chem 2004, 10:1404–1409.

    Article  CAS  Google Scholar 

  29. Miyao A, Tanaka K, Muraka K, et al.: Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 2003, 15:1771–1780.

    Article  PubMed  Google Scholar 

  30. Terada R, Urawa H, Inagaki Y, et al.: Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 2002, 20:1030–1034.

    Article  PubMed  CAS  Google Scholar 

  31. Zamecnik PC, Stephenson ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 1978, 75:280–284.

    Article  PubMed  CAS  Google Scholar 

  32. Napolis C, Lemieux C, Jorgensen R: Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant 2 1990, 279–289.

    Google Scholar 

  33. van der Krol AR, Mur LA, Beld M, et al.: Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990, 2:291–299.

    Article  PubMed  Google Scholar 

  34. Fire A, Xu S, Montgomery MK, et al.: Potent and specific interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  35. Waterhouse PM, Wang MB, Finnegan EJ: Role of short RNAs in gene silencing. Trends Plant Sci 2001, 6:297–301.

    Article  PubMed  CAS  Google Scholar 

  36. Lowenstein H, Sparholt SH, Klysner SS, et al.: The significance of isoallergenic variations in present and future specific immunotherapy. Int Arch Allergy Immunol 1995, 107:285–289.

    PubMed  CAS  Google Scholar 

  37. Lagares A, Puerta L, Caraballo L: Polymorphism in allergens. Biomedica 2002, 22:51–62.

    PubMed  Google Scholar 

  38. Becker WM: Characterization of Ara h1 by two-dimensional electrophoresis Immunoblot and recombinant techniques: new digestion experiments with peanuts imitating the gastrointestinal tract. Int Arch Allergy Immunol 1997, 113:118–121.

    Article  PubMed  CAS  Google Scholar 

  39. Chatel JM, Bernard H, Orson FM: 2003 Isolation and characterization of two complete Ara h2 isoforms cDNA. Int Arch Allergy Immunol 2003, 131:14–18.

    Article  PubMed  CAS  Google Scholar 

  40. Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role of a bidentale ribonuclease in the initiation step of RNA interference. Nature 2001, 409:363–366.

    Article  PubMed  CAS  Google Scholar 

  41. Sharp PA: RNA interference. Genes Dev 2001, 15:188–200.

    Article  Google Scholar 

  42. Meins F: RNA degradation and models for post-transcriptional gene silencing. Plant Mol Biol 2000, 43:261–273.

    Article  PubMed  CAS  Google Scholar 

  43. Hammond SM, Berstein E, Beach D, Hannon GJ: An RNAdirected nuclease mediates post-transcriptional gene silencing in drosophila cells. Nature 2000, 404:293–296.

    Article  PubMed  CAS  Google Scholar 

  44. Mitsuhara I, Shirasawa-Seo N, Iwai T, et al.: Release from posttranscriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 2002, 160:343–352.

    PubMed  CAS  Google Scholar 

  45. Stoutjesdijk PA, Singh SP, Liu Q, et al.: hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 2002, 129:1723–1731.The hpRNA construct allows stable silencing phenotyping in the plant progeny. Stable inheritance is a critical point in the development of the allergen-free peanut.

    Article  PubMed  CAS  Google Scholar 

  46. Wesley SV, Helliwell CA, Smith NA, et al.: Construct design for efficient, effective high-throughput gene silencing in plants. Plant J 2001, 27:581–590.Generic vector for efficient silencing phenotype in the progeny.

    Article  PubMed  CAS  Google Scholar 

  47. Ozias-Akins P, Schnall JA, Anderson WF, et al.: Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 1993, 93:185–194.

    Article  CAS  Google Scholar 

  48. Murashige T, Skoog F: A revised medium for raid growth and bioassays with tobacco tissue culture. Plant Physiol 1962, 15:473–497.

    Article  CAS  Google Scholar 

  49. Egnin M, Mora A, Prakash CS: Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cell Dev Biol Plant 1998, 34:310–318.

    PubMed  CAS  Google Scholar 

  50. Khandelwal A, Vally HJM, Geetha N, et al.: Engineering hemagglutinin (H) protein of rinderpest virus into peanut (Arachis hypogaea L.) as a possible source of vaccine. Plant Sci 2003, 165:77–84.

    Article  CAS  Google Scholar 

  51. Mansur EA, Lacorte C, de Freitas VG, et al.: 1993 Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Sci 1993, 89:93–99.

    Article  Google Scholar 

  52. Knol EF, Wensing M, Vlooswijk R, et al.: Relevance of Ara h1, Ara h2, and Ara h3 in peanut allergic patients, as determined by IgE-Western-blotting, basophil histamine release, and intracutaneous testing: Ara h2 is the most important peanut allergen. J Allergy Clin Immunol 2003, 111:194.

    Article  Google Scholar 

  53. Konan KN, Viquez OM, Dodo HM: Towards the development of a hypoallergenic peanut through genetic transformation. Appl Biotech Food Sci Pol 2003, 1:159–168.Preliminary data for proving the concept of silencing peanut allergen genes.

    CAS  Google Scholar 

  54. Benfey PN, Ren L, Chua NH: Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 1990, 9:1677–1684.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodo, H., Konan, K. & Viquez, O. A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 5, 67–73 (2005). https://doi.org/10.1007/s11882-005-0058-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-005-0058-0

Keywords

Navigation