Skip to main content
Log in

The role of gene DCDC2 in German dyslexics

Annals of Dyslexia Aims and scope Submit manuscript

Abstract

Dyslexia is a complex reading and writing disorder with a strong genetic component. In a German case-control cohort, we studied the influence of the suspected dyslexia-associated gene DCDC2. For the first time in a German cohort, we describe association of a 2445 basepair deletion, first identified in an American study. Evidence of association for three DCDC2 single nucleotide polymorphisms (rs807724, rs793862, rs807701), previously identified in German or American cohorts, was replicated. A haplotype of these polymorphisms showed evidence for association as well. Thus, our data further corroborate association of DCDC2 with dyslexia. Analysis of functional subgroups suggests association of investigated DCDC2 variants mainly with nondysphonetic, nonsevere, but probably dyseidetic (surface) dyslexia. Based on the presumed function of DCDC2, our findings point to a role of impaired neuronal migration in the etiology of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Genotype relative risk

  2. Confidence interval 95%

  3. Allelic odds ratio

References

  • Barrett, J. C., et al. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England), 21, 263–265. doi:10.1093/bioinformatics/bth457.

    Article  Google Scholar 

  • Boder, E. (1971). Developmental dyslexia: Prevailing diagnostic concepts and a new diagnostic approach. In H. Myklebus (Ed.), Progress in learning disabilities (pp. 293–321). New York: Grune and Stratton.

    Google Scholar 

  • Brickenkamp, R., & Zillmer, E. (2002). The d2 test of attention (9th ed.). Göttingen: Hogrefe.

    Google Scholar 

  • Brkanac, Z., et al. (2007). Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 144, 556–560.

    Article  Google Scholar 

  • Coltheart, M., Masterson, J., Byng, S., Prior, M., & Riddoch, J. (1983). Surface dyslexia. Quarterly Journal of Experimental Psychology, 35, 469–495.

    Google Scholar 

  • Cope, N., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581–591. doi:10.1086/429131.

    Article  Google Scholar 

  • Friocourt, G., et al. (2003). Doublecortin functions at the extremities of growing neuronal processes. Cerebral Cortex (New York, N.Y.), 13, 620–626. doi:10.1093/cercor/13.6.620.

    Article  Google Scholar 

  • Galaburda, A. M., & Livingstone, M. (1993). Evidence for a magnocellular defect in developmental dyslexia. Annals of the New York Academy of Sciences, 682, 70–82. doi:10.1111/j.1749-6632.1993.tb22960.x.

    Article  Google Scholar 

  • Gleeson, J. G., et al. (1998). Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encode a putative signaling protein. Cell, 92, 63–72. doi:10.1016/S0092-8674(00)80899-5.

    Article  Google Scholar 

  • Grigorenko, E. L., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosome 6 and 15. American Journal of Human Genetics, 60, 27–39.

    Google Scholar 

  • Harold, D., et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11(12), 1085–1091. doi:10.1038/sj.mp.4001904.

    Article  Google Scholar 

  • Karl, C. (2004). Die Rolle des Doublecortin-Gens in neuronalen Vorläuferzellen während Migration und Neurogenese. Universität Regensburg. Ref Type: Thesis/Dissertation.

  • Kent, W. J. (2002). BLAT-The BLAST-Like alignment tool. Genome Research, 12, 656–664.

    Google Scholar 

  • Kirsten, H., et al. (2006). CalcDalton: a tool for multiplex genotyping primer design for single-base extension reactions using cleavable primers. BioTechniques, 40, 158, 160, 162.

    Article  Google Scholar 

  • Kirsten, H., et al. (2007). Robustness of single-base extension against mismatches at the site of primer attachment in a clinical assay. Journal of Molecular Medicine (Berlin, Germany), 85, 361–369. doi:10.1007/s00109-006-0129-2.

    Google Scholar 

  • Lathrop, G. M. (1983). Estimating genotype relative risk. Tissue Antigens, 22, 160–162.

    Article  Google Scholar 

  • Lewis, C. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year old boys and girls. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 35(2), 283–292. doi:10.1111/j.1469-7610.1994.tb01162.x.

    Article  Google Scholar 

  • Luciano, M. (2007). A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biol Psychiatry, 62(7), 811–817.

    Article  Google Scholar 

  • Marx, H. (1998). Knuspels Leseaufgaben (KNUSPEL-L). Göttingen: Hogrefe.

    Google Scholar 

  • Marx, H. (2000). Knuspels Leseaufgaben: Theorie, Umsetzung und Überprüfung. In M. Hasselhorn, W. Schneider, & H. Marx (Eds.), Diagnostik von Lese-Rechtschreibschwierigkeiten (pp. 35–62). Göttingen: Hogrefe.

    Google Scholar 

  • Meng, H., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Science of the United States of America, 102, 17053–17058.

    Article  Google Scholar 

  • Moores, C. A., et al. (2004). Mechanism of microtubule stabilization by doublecortin. Molecular Cell, 14, 833–839. doi:10.1016/j.molcel.2004.06.009.

    Article  Google Scholar 

  • Müller-Myhsok, B., & Grimm, T. (1999). Linkage analysis and genetic models in dyslexia: considerations pertaining to discrete trait analysis and quantitative trait analysis. European Child & Adolescent Psychiatry, 8(Suppl. 3), 40–42. doi:10.1007/PL00010692.

    Article  Google Scholar 

  • Nöthen, M. M., et al. (1999). Genetic linkage analysis with dyslexia: evidence for linkage of spelling disability to chromosome 15. European Child & Adolescent Psychiatry, 8(Suppl. 3), 56–59. doi:10.1007/PL00010696.

    Article  Google Scholar 

  • Olson, R. K., Forsberg, H., & Wise, B. (1994). Genes, environment, and development of orthographic skills. In V. W. Berninger (Ed.), The varieties of orthographic knowledge I: theoretical and developmental issues (pp. 27–71). Dordrecht: Kluwer.

    Google Scholar 

  • Pusch, W., et al. (2001). Genotools SNP manager: A new software for automated high-throughput MALDI-TOF mass spectrometry SNP genotyping. BioTechniques, 30, 210–215.

    Google Scholar 

  • Rachlin, J., et al. (2005). muPlex: multi-objektive multiplex PCR assay design. Nucleic Acids Research, 33, W544–W547. doi:10.1093/nar/gki377.

    Article  Google Scholar 

  • Reuter-Liehr, C. (1993). Behandlung der Lese-Rechtschreibschwäche nach der Grundschulzeit: Anwendung und Überprüfung eines Konzeptes. Zeitschrift fur Kinder- und Jugendpsychiatrie, 21(3), 135–147.

    Google Scholar 

  • Schneider, W., et al. (1999). Frühe Prävention von Lese- Rechtschreibproblemen. Das Würzburger Trainingsprogramm zur Förderung sprachlicher Bewusstheit bei Kindergartenkindern. Kindheit und Entwicklung, 8, 147–152. doi:10.1026//0942-5403.8.3.147.

    Article  Google Scholar 

  • Schuler, G. D. (1997). Sequence mapping by electronic PCR. Genome Research, 7, 541–550.

    Google Scholar 

  • Schulte-Körne, G., Remschmid, H., & Hebebrand, J. (1993). Zur Genetik der Lese-Rechtschreibschwäche. Zeitschrift fur Kinder- und Jugendpsychiatrie, 21(3), 242–252.

    Google Scholar 

  • Schulte-Körne, G., et al. (1998). Evidence for linkage of spelling disability to chromosome 15. American Journal of Human Genetics, 63, 279–282. doi:10.1086/301919.

    Article  Google Scholar 

  • Schulte-Körne, G., Deimel, W., & Remschmidt, H. (2001). Zur Diagnostik der Lese-Rechtschreibstörung. Zeitschrift fur Kinder- und Jugendpsychiatrie und Psychotherapie, 29(2), 113–116. doi:10.1024//1422-4917.29.2.113.

    Article  Google Scholar 

  • Schumacher, J., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 52–62. doi:10.1086/498992.

    Article  Google Scholar 

  • Stevenson, J. (1991). Which aspects of processing text mediate genetic effects? Read. Writ. Interdisc. J., 3, 249–269. doi:10.1007/BF00354961.

    Article  Google Scholar 

  • Weiß, R. H. (1998). Grundintelligenztest Skala 2. Göttingen: Hogrefe.

    Google Scholar 

  • Wenzel, T. (2003). Genosnip: SNP genotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides, Nucleotides & Nucleic Acids, 22, 1579–1581. doi:10.1081/NCN-120023038.

    Article  Google Scholar 

  • Zhang, K., et al. (2005). HAPLORE: a program for haplotype reconstruction in general pedigrees without recombination. Bioinformatics (Oxford, England), 21(1), 90–103. doi:10.1093/bioinformatics/bth388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wilcke.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM 1

List of Publications on dyslexia and Chromosomes 6 and 15 (DOC 108 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcke, A., Weissfuss, J., Kirsten, H. et al. The role of gene DCDC2 in German dyslexics. Ann. of Dyslexia 59, 1–11 (2009). https://doi.org/10.1007/s11881-008-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-008-0020-7

Keywords

Navigation