Skip to main content
Log in

Dynamic interaction of trace gases (VOCs, ozone, and NOx) in the rural atmosphere of sub-tropical India

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The atmospheric chemistry and health implications of pollutants are important scientific concerns in the rural atmosphere. The current study investigates the estimation of seasonal and diurnal variability of VOCs, ozone, and NOx in the rural area located in a tropical region of India during the year 2013–2014. Results showed that most of the targeted VOCs were higher in winter followed by summer and autumn. The diurnal variability of aromatic hydrocarbons showed similar pattern with different amplitudes as maxima and minima during morning (07:00–10:00 h) or evening (16:00–19:00 h) and daytime (10:00–16:00 h), respectively. The sum of aromatic VOCs are found to be in the range from 27.3 to 87.9 μg/m3. In addition to this, O3 and NOx were observed as 45.04 ± 15.19 μg/m3 and 12.41 ± 3.49 μg/m3, respectively, during the observation period. The estimated VOC/NOx ratios (ranged from 3.4 to 3.7) indicated that the selected rural area was VOC limited in terms of ozone sensitivity. The sources of the VOCs have been explained by characteristic ratios, correlation, and principal component analysis. Further, ozone-forming potential (OFP) of the targeted aromatic VOCs has been evaluated using maximum incremental reactivity which suggested toluene (benzene) contributed the largest (lowest) in the ozone formation. Exposure assessment in terms of lifetime cancer and non-cancer risks lies within the acceptable range of USEPA guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alghamdi MA, Khoder M, Abdelmaksoud AS, Harrison M, Hussein T (2014) Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual Atmos Health 7:467–480

    Article  CAS  Google Scholar 

  • Avery RJ (2006) Reactivity-based VOC control for solvent products: more efficient ozone reduction strategies. Environ Sci Technol 40:4845–4850

    Article  CAS  Google Scholar 

  • Baudice A, Gros V, Sauvage S, Locoge N, Sanchez O, Kalogridis C (2016) Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmos Chem Phys Diss 185:1–51

    Google Scholar 

  • Bon DM, Ulbrich IM, De Gouw JA, Warneke C, Kuster WC, Alexander ML, Baker A (2011) Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison , emission ratios , and source attribution. Atmos Chem Phys 11:2399–2421

    Article  CAS  Google Scholar 

  • Cai CJ, Geng FH, Tie XX, Yu Q, Li P, Zhou GQ (2010) Characteristics of ambient volatile organic compounds (VOCs) measured in shanghai. China, Sensors 10:7843–7862

    Article  CAS  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manage Assoc 44:881–899

    Article  CAS  Google Scholar 

  • Cerón-Bretón JG, Cerón-Bretón RM, Kahl JDW, Ramírez-Lara E, Guarnaccia C, Aguilar-Ucán CA, Montalvo-Romero C, Anguebes-Franseschi F, López-Chuken U (2015) Diurnal and seasonal variation of BTEX in the air of Monterrey, Mexico: preliminary study of sources and photochemical ozone pollution. Air Qual Atmos Health 8:469–482

    Article  Google Scholar 

  • Chang CT, Chen BY (2008) Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust. J Hazard Mat 153:1262–1269

    Article  CAS  Google Scholar 

  • Choi SW, Park SW, Lee CS, Kim HJ, Bae S, Inyang HI (2009) Patterns of VOC and BTEX concentration in ambient air around industrial sources in Daegu, Korea. J Environ Sci Health Part-A 44:99–107

    Article  CAS  Google Scholar 

  • de Blas M, Navazo M, Alonso L, Durana N, Iza J (2013) Trichloroethylene, tetrachloroethylene and carbon tetrachloride in an urban atmosphere: mixing ratios and temporal patterns. Intl J Environ Anal Chem 93(2):228–244

    Article  Google Scholar 

  • Debaje SB, Kakade AD (2009) Surface ozone variability over western Maharashtra. India J Hazard Mater 161:686–700

    Article  CAS  Google Scholar 

  • Demir S, Saral A, Ertürk F (2012) Effect of diurnal changes in VOC source strengths on performances of receptor models. Environ Sci Pollut Res 19:1503–1514

    Article  CAS  Google Scholar 

  • Du Z, Mo J, Zhang Y (2014) Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ Int 73:33–45

    Article  CAS  Google Scholar 

  • Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration , sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88:25–35

    Article  CAS  Google Scholar 

  • Duenas C, Fernandez MC, Canete S, Carretero J, Liger E (2004) Analyses of ozone in urban and rural sites in Malaga (Spain). Chemosphere 56:631–639

    Article  CAS  Google Scholar 

  • Dumanoglu Y, Kara M, Altiok H, Odabas M, Elbir T (2014) Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmos Environ 98:168–178

    Article  CAS  Google Scholar 

  • Filella IÃ, Peñuelas J (2006) Daily, weekly and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmos Environ 40:7752–7769

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J (2009) The formation , properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    Article  CAS  Google Scholar 

  • Hassan IA, Basahi JM, Iqbal MI, Tutki MH (2013) Spatial distribution and temporal variation in ambient ozone and its associated NOx in the atmosphere of Jeddah City, Saudi Arabia. Aeros Air Qual Res 13:1712–1722

    CAS  Google Scholar 

  • Ho KF, Lee SC, Guo H, Tsai WY (2004) Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ 322:155–166

    Article  CAS  Google Scholar 

  • Huang Y, Sai S, Ho H, Ho KF, Lee SC, Yu JZ, Louie PKK (2011) Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J Hazard Mat 186:344–351

    Article  CAS  Google Scholar 

  • IARC (2006) Monographs on the evaluation of carcinogenic risks to humans. Complete list of agents evaluated and their classification

  • Kang DW, Aneja VP, Mathur R, Ray JD (2004) Observed and modeled VOC chemistry under high VOC/NOx conditions in the Southeast United States national parks. Atmos Environ 38:4969–4974

    Article  CAS  Google Scholar 

  • Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mat 166:17–26

    Article  CAS  Google Scholar 

  • Kim KH, Shon ZH, Kim MY, Sunwoo Y, Jeon EC, Hong JH (2008) Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. J Hazard Mater 150:754–764

    Article  CAS  Google Scholar 

  • Kos G, Kanthasami V, Adechina N, Ariya PA (2014) Volatile organic compounds in Arctic snow: concentrations and implications for atmospheric processes. Environ Sci Proc Imp 16:2592–2603

    Article  CAS  Google Scholar 

  • Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK (2013) Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollu Res 21:2240–2248

    Article  Google Scholar 

  • Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK (2014a) Determination of volatile organic compounds and associated health risk assessment in residential homes and hostels within an academic institute, New Delhi. Indoor Air 24:474–483

    Article  CAS  Google Scholar 

  • Kumar A, Singh D, Singh BP, Singh M, Kumar K, Jain VK (2014b) Spatial and temporal variability of surface ozone and nitrogen oxides in urban and rural ambient air of Delhi-NCR, India. Air Qual Atmos Health 8:391–399

    Article  Google Scholar 

  • Kuo CP, Liao HT, Chou CCK, Wu CF (2014) Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Sci Total Environ 472:880–887

    Article  CAS  Google Scholar 

  • Lai C, Chuang K, Chang J (2013) Source apportionment of volatile organic compounds at an international airport. Aero Air Qual Res 13:689–698

    CAS  Google Scholar 

  • Li L, Xie S, Zeng L, Wu R, Li J (2015) Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos Environ 113:247–254

    Article  CAS  Google Scholar 

  • Liu Y, Shao M, Lu S, Chang C, Wang J, Chen G (2008) Volatile organic compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos Chem Phys 8:1531–1545

    Article  CAS  Google Scholar 

  • Lü H, Cai Q, Wen S, Chi Y, Guo S, Sheng G, Fu J, Antizar-Ladislao B, Lü H, Cai Q, Wen S (2009) Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China. Atmos Res 94:363–372

    Article  Google Scholar 

  • Miller L, Xu X, Mannion AG, Brook J, Wheeler A (2012) Multi-season, multi-year concentrations and correlations amongst the BTEX group of VOCs in an urbanized industrial city. Atmos Environ 61:305–315

    Article  CAS  Google Scholar 

  • Monod A, Sive BC, Avino P, Chen T, Blake DR, Rowland FS (2001) Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ 35:135–149

    Article  CAS  Google Scholar 

  • Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E), a tropical rural site in India. J Geophys Res 107:4197

    Article  Google Scholar 

  • Nguyen HT, Kim KH, Kim MY (2009) Volatile organic compounds at an urban monitoring station in Korea. J Hazard Mat 161:163–174

    Article  CAS  Google Scholar 

  • Niu Z, Zhang H, Xu Y, Liao X, Xu L, Chen J (2012) Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. J Environ Monit 14:1145–1152

    Article  Google Scholar 

  • Oiamo TH, Johnson M, Tang K, Luginaah IN (2015) Assessing traffic and industrial contributions to ambient nitrogen dioxide and volatile organic compounds in a low pollution urban environment. Sci Total Environ 529:149–157

    Article  CAS  Google Scholar 

  • Olumayede EG, Okuo JM (2012) Distribution, temporal and diurnal behaviors of total volatile organic compounds over the urban atmosphere of southwestern Nigeria. J Environ Sc Eng A 1:785–796

    CAS  Google Scholar 

  • Pagans E, Font X, S’anchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mat 131:179–186

    Article  CAS  Google Scholar 

  • Parra MA, González L, Elustondo D, Garrigó J, Bermejo R, Santamaría JM (2006) Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Sci Total Environ 370:157–167

    Article  CAS  Google Scholar 

  • Prinn R, Cunnold D, Rasmussen R, Simmonds P, Alyea F, Crawford A, Fraser P, Rosen R (1987) Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science 238:945–950

    Article  CAS  Google Scholar 

  • Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578

    Article  CAS  Google Scholar 

  • Ramírez N, Cuadras A, Rovira E, Borrull FR, Marcé M (2012) Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ Int 39:200–209

    Article  Google Scholar 

  • Ran L, Zhao C, Geng F, Tie X, Tang X, Peng L, Zhou G, Yu Q, Xu J, Guenther A (2009) Ozone photochemical production in urban Shanghai , China: analysis based on ground level observations. J Geo Res 114:1–14

    Article  Google Scholar 

  • Ras MR, Marcé RM, Borrull F (2009) Characterization of ozone precursor volatile organic compounds in urban atmospheres and around the petrochemical industry in the Tarragona region. Sci Total Environ 407:4312–4319

    Article  CAS  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Sivakumar V, Lingaswamy AP, Arafath SM, Umadevi K, Kumari SP, Ahammed YN, Lal S (2012) Analysis of diurnal and seasonal behavior of surface ozone and its precursors (NOx) at a semi-arid rural site in southern India. Aero Air Qual Res 12:1081–1094

    CAS  Google Scholar 

  • Sánchez NS, Alarcón ST, Santonja RT, Pórcel JL (2014) New device for time-averaged measurement of volatile organic compounds (VOCs). Sci Total Environ 485–486:720–725

    Article  Google Scholar 

  • Saral A, Demir S, Yıldız S (2009) Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach. J Hazard Mat 168:338–345

    Article  CAS  Google Scholar 

  • Sarkar C, Chatterjee A, Majumdar D, Ghosh SK, Srivastava A, Raha S (2014) Volatile organic compounds over eastern Himalaya, India: temporal variation and source characterization using positive matrix factorization. Atmos Chem Phys Discuss 14:32133–32175

    Article  Google Scholar 

  • Sauvage S, Plaisance H, Locoge N, Wroblewski A, Coddeville P, Galloo JC (2009) Long term measurement and source apportionment of non-methane hydrocarbons in three French rural areas. Atmos Environ 43:2430–2441

    Article  CAS  Google Scholar 

  • Singh D, Kumar A, Singh BP, Anandam K, Singh M, Mina U, Kumar K, Jain VK (2015) Spatial and temporal variability of VOCs and its source estimation during rush/non-rush hours in ambient air of Delhi, India. Air Qual Atmos Health 9:483–493

  • Singh D, Kumar A, Kumar K, Singh B, Mina U, Singh BB, Jain VK (2016) Statistical modeling of O3 , NOx , CO , PM2.5, VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution. Sci Total Environ 572:586–594

    Article  CAS  Google Scholar 

  • Strandberg B, Rynell KB, Sallsten G (2014) Evaluation of three types of passive samplers for measuring 1,3-butadiene and benzene at workplaces. Environ Sci Proc Imp 16:1006–1014

    Google Scholar 

  • Tan JH, Guo SJ, Ma YL, Yang FM, He KB, Yu YC, Wang JW, Shi ZB, Chen GC (2012) Non-methane hydrocarbons and their ozone formation potentials in Foshan. China, Aero Air Qual Res 12:387–398

    CAS  Google Scholar 

  • Tang JH, Chan LY, Chan CY, Lia YS, Chang CC, Liu SC, Wu D, Li YD (2007) Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China. Atmos Environ 41:8620–8632

    Article  CAS  Google Scholar 

  • Tang JH, Chan LY, Chang CC, Liu S, Li YS (2009) Characteristics and sources of non-methane hydrocarbons in background atmosphere of eastern, southwestern and southern China. J Geophy Res 114:D03304

  • Tiwari V, Hanai Y, Masunaga S (2010) Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual Atmos Health 3:65–75

    Article  CAS  Google Scholar 

  • Toro AR, Seguel RJ, Raul GEMS, Manuel ALG (2015) Ozone, nitrogen oxides, and volatile organic compounds in a central zone of Chile. Air Qual Atmos Health 8:545–557

    Article  Google Scholar 

  • USEPA (1997) Air risk assessment work plan. Air and Radiation Division, Tristate, EPA, Washington

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1998) Integrated risk information system, www.epa.gov. US Environmental Protection Agency, Washington, DC

  • Wang T, Wong CH, Cheung TF, Blake DR, Arimoto R, Baumann K, Tang J, Ding GA, Yu XM, Li YS, Streets DG, Simpson IJ (2004) Relationships of trace gases and aerosols and the emission characteristics at Linan, a rural site in eastern China, during spring 2001. J Geophys Res 109:D19S05

    Google Scholar 

  • Wang Y, Hu B, Tang G, Ji D, Zhang H, Bai J, Wang X, Wang Y (2013) Characteristics of ozone and its precursors in northern China: a comparative study of three sites. Atmos Res 132–133:450–459

    Article  Google Scholar 

  • Yan Y, Peng L, Li R, Li Y, Li L, Bai H (2017) Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou. China, Environ Poll 223:295–304

    Article  CAS  Google Scholar 

  • Yang M, Wang Y, Chen J, Li H, Li Y (2016) Aromatic hydrocarbons and halocarbons at a mountaintop in southern China. Aerosol Air Qual Res 16:478–491

    Article  CAS  Google Scholar 

  • Zhang Y, Mu Y, Liu J, Mellouki A (2012) Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J Environ Sci 24:124–130

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Barlett SIJ, Blake DR, Fu X, Zhang Z, Ding X (2013) Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. J Hazard Mater 250–251:403–411

    Article  Google Scholar 

  • Zhou J, You Y, Bai Z, Hu Y, Zhang J, Zhang N (2011) Environment health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci Total Environ 409:452–459

    Article  CAS  Google Scholar 

  • Zhu Y, Yang L, Chen J, Wang X, Xue L, Shao M, Lu S, Wang W (2016) Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in northern China during summer 2013. Atmos Environ 124:156–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study is supported by Research Grant (Senior Research Fellowship) from Council for Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, D., Anandam, K. et al. Dynamic interaction of trace gases (VOCs, ozone, and NOx) in the rural atmosphere of sub-tropical India. Air Qual Atmos Health 10, 885–896 (2017). https://doi.org/10.1007/s11869-017-0478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0478-8

Keywords

Navigation