Skip to main content
Log in

Spatial and temporal distribution of polycyclic aromatic hydrocarbons and elemental carbon in Bakersfield, California

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Despite increasing evidence that airborne polycyclic aromatic hydrocarbon (PAH) exposures contribute to adverse health outcomes for sensitive populations, limited data are available on short-term intraurban spatial distributions for use in epidemiologic research. Exposure assessments for airborne PAHs are uncommon because air sampling for PAHs is a labor-, equipment-, and time-intensive task. To address this gap, we measured wintertime PAH concentrations during 2010–2011 in Bakersfield, California, USA, a major city in the Southern San Joaquin Valley. Specifically, 58 96-hour integrated PAH samples were collected during four time periods at 14 locations from November 2010 to January 2011; duplicates were collected at two sites. We also collected elemental carbon (EC) at the same 14 sites and analyzed the two time periods with the highest ambient PAH pollution. We used linear regression models to quantify the relationship between potential spatial and temporal predictors of PAH concentrations. We found that wintertime PAH concentrations in Bakersfield, CA, are best predicted by meteorological variables and traffic proximity. Our model explains a moderate amount of the variability in the data (R 2 = 0.58), likely reflecting the major sources of PAHs in Bakersfield. We also observed that PAH concentrations were more spatially variable than EC concentrations. Comparing our data to historical monitoring data at one location in Bakersfield showed that the relatively low PAH concentrations during the 2010–2011 winter in Bakersfield is part of a long-term trend in decreasing PAH concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EPA:

US Environmental Protection Agency

IARC:

International Agency for Research on Cancer

PAH:

Polycyclic aromatic hydrocarbons

EC:

Elemental carbon

CV:

Coefficient of variation

FLU:

Fluoranthene

PYR:

Pyrene

BAA:

Benz[a]anthracene

CHR:

Chrysene

BBF:

Benzo[b]fluoranthene

BKF:

Benzo[k]fluoranthene

BAP:

Benzo[a]pyrene

ICP:

Indeno[1,2,3-cd]pyrene

DBA:

Dibenz[a,h]anthracene

BGP:

Benzo[ghi]perylene

References

  • Allen JO, Dookeran NM, Smith KA, Sarofim AF, Taghizadeh K, Lafleur AL (1996) Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ Sci Technol 30:1023–1031

    Article  CAS  Google Scholar 

  • Bari MA, Bamumbach G, Kuch B, Scheffknecht G (2010) Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany. Air Qual Atmos Health 3:103–116. doi:10.1007/s11869-009-0057-8

    Article  CAS  Google Scholar 

  • California Air Resources Board (2008) 2004 annual data quality report for the monitoring and laboratory Division’s and local districts’ air monitoring networks. California Air Resources Board, Sacramento

    Google Scholar 

  • Cadle SH, Mulawa PA, Hunsanger EC (1999) Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environ Sci Technol 33:2328–2339

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmos Environ 27A:1185–1201

    Article  CAS  Google Scholar 

  • den Hartigh LJ, Lamé MW, Ham W, Kleeman MJ, Tablin F, Wilson DW (2010) Endotoxin and polycyclic aromatic hydrocarbons in ambient fine particulate matter from Fresno, California initiate human monocyte inflammatory responses mediated by reactive oxygen species. Toxicol in Vitro 24:1993–2002. doi:10.1016/j.tiv.2010.08.017

    Article  Google Scholar 

  • Diaz-Sanchez D, Tsien A, Casillas A, Dotson A, Saxon A (1996) Enhanced nasal cytokine production in human beings after in vivo challenge with diesel exhaust particles. J Allergy Clin Immunol 98:114–123

    Article  CAS  Google Scholar 

  • Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A (1994) Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest 94:1417–1425

    Article  CAS  Google Scholar 

  • Fruin S et al (2014) Spatial variation in particulate matter components over a large urban area. Atmos Environ 83:211–219. doi:10.1016/j.atmosenv.2013.10.063

    Article  CAS  Google Scholar 

  • Fujita EM et al (2007) Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California’s south coast air basin. J Air Waste Manage Assoc 57:705–720. doi:10.3155/1047-3289.57.6.705

    Article  CAS  Google Scholar 

  • Gale SL, Noth EM, Mann J, Balmes J, Hammond SK, Tager IB (2012) Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA. J Expo Sci Environ Epidemiol 22:386–392. doi:10.1038/jes.2012.29

    Article  CAS  Google Scholar 

  • Hammond SK, Noth EM, Tager IB, Biging GS, Gale S, Mann JK (2010) Short- and Long-Term Respiratory Effects of Exposure to Traffic PAHs in a Cohort of Children with Asthma vol 1. Mickey Leland Urban Air Toxics Research Center

  • Hew KM et al. (2014) Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology doi:10.1111/cea.12377

  • International Agency for Research on Cancer (1987) Overall Evaluations of Carcinogenicity: an updating of IARC monographs volumes 1 to 42. IARC monographs on the evaluation of Carcinogenic risks to humans 38

  • International Agency for Research on Cancer (1989) Diesel and gasoline engine exhausts. IARC monographs on the evaluation of carcinogenic risks to humans 46

  • Jedrychowski W et al (2007) Wheezing and lung function measured in subjects exposed to various levels of fine particles and polycyclic aromatic hydrocarbons. Cent Eur J Med 2:66–78. doi:10.2478/s11536-006-0043-6

    Google Scholar 

  • Jedrychowski WA et al (2010) Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds. Pediatric Allergy and Immunology 21:e723–732

  • Jedynska A et al (2014) Development of land use regression models for elemental, organic carbon, PAH, and hopanes/steranes in 10 ESCAPE/TRANSPHORM European study areas. Environ Sci Technol 48:14435–14444. doi:10.1021/es502568z

    Article  CAS  Google Scholar 

  • Jenkins BM, Jones AD, Turn SQ, Williams RB (1996) Particle concentrations, gas-particle partitioning, and species intercorrelations for polycyclic aromatic hydrocarbons (PAH) emitted during biomass burning. Atmos Environ 30:3825–3835

    Article  CAS  Google Scholar 

  • Jones R, Payne B (1997) Clinical investigation and statistics in laboratory medicine. ACB Venture Publications, London

  • Kawanaka Y, Matsumoto E, Sakamoto K, Wang N, Yun S-J (2004) Size distributions of mutagenic compounds and mutagenicity in atmospheric particulate matter collected with a low-pressure cascade impactor. Atmos Environ 38:2124–2132. doi:10.1016/j.atmosenv.2004.01.021

    Article  Google Scholar 

  • Krudysz MA, Dutton S, Brinkman GL, Fine PM, Sioutas C, Froines J (2009) Intra-community spatial variation of size-fractionated organic compounds in Long Beach, California. Air Qual Atmos Health 2:69–88. doi:10.1007/s11869-009-0035-1

    Article  CAS  Google Scholar 

  • Lee SJ, Demokritou P, Koutrakis P, Delgado-Saborit JM (2006) Development and evaluation of personal respirable particulate sampler (PRPS). Atmos Environ 40:212–224

    Article  CAS  Google Scholar 

  • Liu J et al (2013) Epigenetically-mediated pathogenic effects of phenanthrene on regulatory T cells. J Toxicol. doi:10.1155/2013/967029

    Google Scholar 

  • Lurmann F, Avol E, Gilliland F (2015) Emissions reduction policies and recent trends in Southern California’s ambient air quality. J Air Waste Manage Assoc 65:324–335. doi:10.1080/10962247.2014.991856

    Article  CAS  Google Scholar 

  • Marr L, Kirchstetter T, Harley R, Miguel A, Hering S, Hammond S (1999) Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ Sci Technol 33:3091–3099

    Article  CAS  Google Scholar 

  • Melymuk L, Robson M, Helm PA, Diamond ML (2013) Application of land use regression to identify sources and assess spatial variation in urban SVOC concentrations. Environ Sci Technol 47:1887–1895. doi:10.1021/es3043609

    Article  CAS  Google Scholar 

  • Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, Tager IB (2010) Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 126:845–852

    Article  CAS  Google Scholar 

  • Noth EM, Hammond SK, Biging GS, Tager IB (2011) A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmos Environ 45:2394–2403. doi:10.1016/j.atmosenv.2011.02.014

    Article  CAS  Google Scholar 

  • Noth EM, Hammond SK, Biging GS, Tager IB (2013) Mapping and modeling airborne urban phenanthrene distribution using vegetation biomonitoring. Atmos Environ 77:518–524. doi:10.1016/j.atmosenv.2013.05.056

    Article  CAS  Google Scholar 

  • Padula AM et al (2014a) Ambient polycyclic aromatic hydrocarbons and pulmonary function in children. J Expo Sci Environ Epidemiol. doi:10.1038/jes.2014.42

    Google Scholar 

  • Padula AM, Noth EM, Hammond SK, Lurmann FW, Yang W, Tager IB, Shaw GM (2014b) Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environ Res 135:221–226

    Article  CAS  Google Scholar 

  • Perera FP et al (2003) Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 111:201–205

    Article  CAS  Google Scholar 

  • Perera FP, Tang W-Y, Herbstman J, Tang D, Levin L, Miller RL, Ho S-M (2009) Relation of DNA methylation of 59-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4:e4488

    Article  Google Scholar 

  • Riddle SG, Jakober CA, Robert MA, Cahill TM, Charles MJ, Kleeman MJ (2007) Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmos Environ 41:8658–8668

    Article  CAS  Google Scholar 

  • Rinehart LR, Fujita EM, Chow JC, Magliano K, Zielinska B (2006) Spatial distribution of PM2.5 associated organic compounds in central California. Atmos Environ 40:290–303

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BR (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Schauer JJ, Cass GR (2000) Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol 34:1821–1832

    Article  CAS  Google Scholar 

  • Schober W et al (2007) Environmental polycyclic aromatic hydrocarbons (PAHs) enhance allergic inflammation by acting on human basophils. Inhal Toxicol 19:151–156. doi:10.1080/08958370701496046

    Article  CAS  Google Scholar 

  • Tager IB et al. (2006) Fresno Asthmatic Children’s Environment Study (FACES) Final report prepared for the California Air Resources Board, Sacramento, CA, by University of California, Berkeley, CA; Sonoma Technology, Inc., Petaluma, CA; California Air Resources Board, Sacramento, CA; and California Department of Health Services, Richmond, CA, ARB Contract Nos. 99–322 (STI-903370.07-2863), April 25.

  • US EPA (2015) The Green Book Nonattainment Areas for Criteria Pollutants. United States Enviornmental Protection Agency.

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819. doi:10.1016/j.atmosenv.2008.10.050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the California Air Resources Board, the Kern High School District, and the principals of Freedom Middle School, Rosedale Middle School, and Virginia Avenue Elementary School in Bakersfield, CA for allowing us to conduct air sampling on their properties. We thank the Ed Avol and Scott Fruin of the University of Southern California, Department of Preventive Medicine, for loaning equipment essential for the study. We thank Biruk Tammru and Jay Hyun Kim for their assistance in the laboratory. The research described in this article was supported by the University of California, Berkeley/Stanford Children’s Environmental Health Center, sponsored by the National Institute for Environmental Health Science (1P20ES018173, P01ES022849) and the US Environmental Protection Agency (RD-83459601-0, R834596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Noth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noth, E.M., Lurmann, F., Northcross, A. et al. Spatial and temporal distribution of polycyclic aromatic hydrocarbons and elemental carbon in Bakersfield, California. Air Qual Atmos Health 9, 899–908 (2016). https://doi.org/10.1007/s11869-016-0399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-016-0399-y

Keywords

Navigation