Skip to main content
Log in

On the Schrödinger equation with potential in modulation spaces

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

This work deals with Schrödinger equations with quadratic and sub-quadratic Hamiltonians perturbed by a potential. In particular we shall focus on bounded, but not necessarily smooth perturbations, following the footsteps of the preceding works (Cordero et al., Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class, 2013; Cordero et al., Propagation of the Gabor wave front set for Schrödinger equations with non-smooth potentials, 2013). To the best of our knowledge these are the pioneering papers which contain the most general results about the time–frequency concentration of the Schrödinger evolution. We shall give a representation of such evolution as the composition of a metaplectic operator and a pseudodifferential operator having symbol in certain classes of modulation spaces. About propagation of singularities, we use a new notion of wave front set, which allows the expression of optimal results of propagation in our context. To support this claim, many comparisons with the existing literature are performed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(z\in \mathbb {C}\), with \(\mathrm{Re}\, z\ge 0\), \(z\not =0\), we take as argument of \(z^{1/2}\) that belonging to \([-\pi /4,\pi /4]\). We then define \(z^{k/2}=(z^{1/2})^k\) if \(k\) is an integer.

References

  1. Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246, 366–384 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bony, J.: Opérateurs intégraux de Fourier et calcul de Weyl-Hörmander (cas d’une métrique symplectique), Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1994), pp. 1–14. École Polytech, Palaiseau (1994)

  3. M. Cappiello and R. Shulz. Microlocal analysis of quasianalytic Gelfand-Shilov type ultradistributions. arXiv:1309.4236

  4. Cordero, E., De Mari, F., Nowak, K., Tabacco, A.: Analytic features of reproducing groups for the metaplectic representation. J. Fourier Anal. Appl. 12(3), 157–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cordero, E., Gröchenig, K., Nicola, F.: Approximation of Fourier integral operators by Gabor multipliers. J. Fourier Anal. Appl. 18(4), 661–684 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cordero, E., Gröchenig, K., Nicola, F., Rodino, L.: Wiener algebras of Fourier integral operators. J. Math. Pures Appl. 99, 219–233 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cordero, E., Gröchenig, K., Nicola, F., Rodino. L.: Generalized Metaplectic Operators and the Schrödinger Equation with a Potential in the Sjöstrand Class. Submitted (2013). arXiv:1306.5301

  8. Cordero, E., Nicola, F.: Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal. 254, 506–534 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cordero, E., Nicola, F., Rodino, L.: Time-frequency analysis of Fourier integral operators. Commun. Pure Appl. Anal. 9(1), 1–21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cordero, E., Nicola, F., Rodino, L.: Sparsity of Gabor representation of Schrödinger propagators. Appl. Comput. Harmon. Anal. 26(3), 357–370 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cordero, E., Nicola, F., Rodino. L.: Schrödinger equations in modulation spaces. Studies in Phase Space Analysis with Applications to PDEs, Progress in Nonlinear Differential Equations and Their Applications, Birkhuser (Springer), 84, 81–99 (2013). ISBN 9781461463474

  12. Cordero, E., Nicola, F., Rodino, L.: Propagation of the Gabor Wave Front Set for Schrödinger Equations with non-smooth potentials. Submitted (2013). arXiv:1309.0965

  13. Cordero, E., Nicola, F., Rodino, L.: Schrödinger equations with rough Hamiltonians. arXiv:1312.7791

  14. Cordero, E., Tabacco, A.: Triangular subgroups of \(Sp(d,\mathbb{R})\) and reproducing formulae. J. Funct. Anal. 264(9), 2034–2058 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. de Gosson, M.A.: Symplectic methods in harmonic analysis and in mathematical physics, volume 7 of Pseudo-Differential Operators. Theory and Applications. Birkhäuser/Springer Basel AG, Basel (2011)

  16. Engel, K.-J., Nagel, R.: A short course on operator semigroups. Universitext. Springer, New York (2006)

    MATH  Google Scholar 

  17. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups, Technical Report, University Vienna, and also in Wavelets and Their Applications, Krishna, M., Radha, R., Thangavelu, S. editors, Allied Publishers 2003, 99–140 (1983)

  18. Folland, G.B.: Harmonic analysis in phase space. Princeton Univ. Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  19. Gröchenig, K.: Time–frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam. 22(2), 703–724 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gröchenig, K.: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc, Boston, MA (2001)

  21. Gröchenig, K., Rzeszotnik, Z.: Banach algebras of pseudodifferential operators and their almost diagonalization. Ann. Inst. Fourier. 58(7), 2279–2314 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guillemin, V., Sternberg, S.: Symplectic techniques in physics. Cambridge University Press, Cambridge (1990)

  23. Hassell, A., Wunsch, J.: The Schrödinger propagator for scattering metrics. Ann. Math. 162, 487–523 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Helffer, B.: Théorie Spectrale pour des Operateurs Globalement Elliptiques. Astérisque, Société Mathématique de France (1984)

  25. Hörmander, L.: Quadratic hyperbolic operators. In: Microlocal analysis and applications, pp. 118–160, Lecture Notes in Math., 1495. Springer, Berlin (1991).

  26. Hörmander, L.: The Analysis of Linear Partial Differential Operators, Vol. III, Springer, Berlin (1985).

  27. Ito, K.: Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric. Comm. Partial Differ. Eqs. 31, 1735–1777 (2006)

    Article  MATH  Google Scholar 

  28. Ito, K., Nakamura, S.: Singularities of solutions to Schrödinger equation on scattering manifold. Am. J. Math. 131(6), 1835–1865 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jensen, A., Nakamura, S.: Mapping properties of functions of Scrödinger operators between \(L^p\)-spaces and Besov spaces. Adv. Stud. Pure Math. Spectral Scatt. Theory Appl. 23, 187–209 (1994)

    MathSciNet  Google Scholar 

  30. Jensen, A., Nakamura, S.: \(L^p\)-mapping properties of functions of Schrödinger operators and their applications to scattering theory. J. Math. Soc. Japan 47(2), 253–273 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kato, K., Kobayashi, M., Ito, S.: Representation of Schrödinger operator of a free particle via short time Fourier transform and its applications. Tohoku Math. J. 64, 223–231 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kato, K., Kobayashi, M., Ito, S.: Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator. SUT J. Math. 47, 175–183 (2011)

    MATH  MathSciNet  Google Scholar 

  33. Kato, k., Kobayashi, M., Ito, S.: Remarks on Wiener Amalgam space type estimates for Schrödinger equation. 41–48, RIMS Kôkyûroku Bessatsu, B33, Res. Inst. Math. Sci. (RIMS), Kyoto (2012).

  34. Kato, K., Kobayashi, M., Ito, I.: Estimates on Modulation Spaces for Schrödinger Evolution Operators with Quadratic and Sub-quadratic Potentials. arXiv:1212.5710

  35. Martinez, A., Nakamura, S., Sordoni, V.: Analytic smoothing effect for the Schrödinger equation with long-range perturbation. Comm. Pure Appl. Math. 59, 1330–1351 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to Schrödinger equations. Adv. Math. 222(4), 1277–1307 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mizuhara, R.: Microlocal smoothing effect for the Schrödinger evolution equation in Gevrey classes. J. Math. Pures Appl. 91, 115–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. ter Morsche, H., Oonincx, P.J.: On the Integral Representation for Metaplectic Operators. J. Fourier Anal. Appl. 8(3), 245–257 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126(2), 349–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nakamura, S.: Semiclassical singularity propagation property for Schrödinger equations. J. Math. Soc. Japan 61(1), 177–211 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, Harcourt Brace Jovanovich Publishers, New York (1975).

  42. Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatshefte für Mathematik, to appear (2014). arXiv:1207.5628v2

  43. Ruzhansky, M., Sugimoto, M., Wang, B.: Modulation Spaces and Nonlinear Evolution Equations. Evol. Eqs. Hyperbolic Schrödinger Type Progr. Math. 301, 267–283 (2012)

  44. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin, second edition. Translated from the 1978 Russian original by Stig I. Andersson (2001)

  45. Schulz, R., Wahlberg, P.: The equality of the homogeneous and the Gabor wave front set. arXiv:1304.7608

  46. Sjöstrand, J.: Wiener type algebras of pseudodifferential operators. In Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, pages Exp. No. IV, 21. École Polytech., Palaiseau (1995)

  47. Tataru, D.: Phase space transforms and microlocal analysis. Phase space analysis of partial differential equations, Vol. II, 505–524, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2004). http://math.berkeley.edu/%7Etataru/papers/phasespace

  48. Taylor, M.E.: Noncommutative Harmonic Analysis. Amer. Math. Soc, Providence, RI (1986)

    Book  MATH  Google Scholar 

  49. Voros, A.: Asymptotic \(h\)-expansions of stationary quantum states. Ann. Inst. Henri Poincaré 26(4), 343–403 (1977)

    MathSciNet  Google Scholar 

  50. Wang, B., Lifeng, Z., Boling, G.: Isometric decomposition operators, function spaces \(E_{p, q}^\lambda \) and applications to nonlinear evolution equations. J. Funct. Anal. 233(1), 1–39 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Eqs. 232, 36–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wang, B., Huo, Z., Hao, C., Guo, Z.: Harmonic analysis method for nonlinear evolution equations. I. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2011)

  53. Weinstein, A.: A symbol class for some Schrödinger equations on \({ R}^n\). Am. J. Math. 107(1), 1–21 (1985)

    Article  MATH  Google Scholar 

  54. Wong, M.W.: Weyl Transforms. Springer, Berlin (1998)

  55. Wunsch, J.: Propagation of singularities and growth for Schrödinger operators. Duke Math. J. 98(1), 137–186 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Zelditch, S.: Reconstruction of singularities for solutions of Schrödinger equations. Comm. Math. Phys. 90, 1–26 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor K. Gröchenig for inspiring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Nicola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero, E., Nicola, F. On the Schrödinger equation with potential in modulation spaces. J. Pseudo-Differ. Oper. Appl. 5, 319–341 (2014). https://doi.org/10.1007/s11868-014-0096-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-014-0096-2

Keywords

Mathematics Subject Classification (2010)

Navigation