Skip to main content
Log in

The conditional Weyl transform and its generalization

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

The expectation value of the Weyl transform of a symbol with a state function equals the phase-space averaging of the symbol with the Wigner distribution. We define the conditional Weyl transform so that its expectation value equals the conditional average of the symbol taken with the Wigner distribution. Furthermore, we generalize to arbitrary operator correspondences and the generalized phase-space distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We note that in different fields the symbol is called the c-function, where c stands for classical function. In time-frequency analysis it is called the ordinary function of time and frequency. The Weyl transform is often called the Weyl operator, the Weyl correspondence, the Weyl ordering rule, or the Weyl rule of association. All integrals go from –\(\infty \) to \(\infty \) unless otherwise noted.

References

  1. Bader, R.F.W., Preston, J.T.: The kinetic energy of molecular charge distribution and molecular stability. Int. J. Quantum Chem. 3, 327 (1969)

    Article  Google Scholar 

  2. Bader, R.F.W.: Atoms in Molecules—A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  3. Boggiatto, P., De Donno, G., Oliaro, A.: Time-frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 362, 4955–4981 (2010)

    Article  MATH  Google Scholar 

  4. Born, M., Jordan, P.: Zur Quantenmechanik. Zeit. f. Phys. 34, 858–888 (1925)

    Article  MATH  Google Scholar 

  5. Choi, H.I., Williams, W.J.: Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust. Speech Signal Process. 37, 862–871 (1989)

    Article  Google Scholar 

  6. Cohen, L.: Generalized phase-space distribution functions. J. Math. Phys. 7, 781–786 (1966)

    Article  Google Scholar 

  7. Cohen, L.: Time-Frequency Analysis. Prentice-Hall, New york (1995)

    Google Scholar 

  8. Cohen, L.: Time-frequency distributions—a review. Proc. IEEE 77, 941–981 (1989)

    Article  Google Scholar 

  9. Cohen, L.: Local values in quantum mechanics. Phys. Lett. A A 212, 315–319 (1996)

    Article  Google Scholar 

  10. Cohen, L.: Local kinetic energy in quantum mechanics. J. Chem. Phys. 70, 788 (1979)

    Google Scholar 

  11. Cohen, L., Loughlin, P.: Generalized Wigner distributions, moments, and conditional correspondence rules. J. Mod. Optics 49, 539–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davidson, K.: Instantaneous moments of signals. University of Pittsburgh, Ph.D. dissertation (2001)

  13. Lee, H.W.: Theory and application of the quantum phase-space distribution-functions. Phys. Rep. 259, 147–211 (1995)

    Article  MathSciNet  Google Scholar 

  14. Loughlin, P., Davidson, K.: Instantaneous kurtosis. IEEE Signal Process. Lett. 7(6), 156–159 (2000)

    Article  Google Scholar 

  15. Margenau, H., Hill, R.N.: Correlation between measurements in quantum theory. Prog. Theor. Phys. 20, 722 (1961)

    Article  MathSciNet  Google Scholar 

  16. Merzbacher, E.: Quantum Mechanics, 3rd edn. Wiley, Piscataway (1997)

    Google Scholar 

  17. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muga, J.G., Seidel, D., Hegerfeldt, G.C.: Quantum kinetic energy densities: an operational approach. J. Chem. Phys. 122, 1 (2005)

    Article  Google Scholar 

  19. Muga, J.G., Palao, J.P., Sala, R.: Average local values and local variances in quantum mechanics. Phys. Lett. A 238, 90–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, New York (2001)

    Book  MATH  Google Scholar 

  21. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  22. Weyl, H.: The Theory of Groups and Quantum Mechanics. E. P. Dutton and Co., New York (1931)

    MATH  Google Scholar 

  23. Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  25. Wong, M.W.: Weyl Transforms. Springer, New York (1998)

    MATH  Google Scholar 

  26. Ville, J.: Theorie et applications de la notion de signal analytique. Cables et Transmissions 2A, 61–74 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Cohen.

Additional information

The research was supported by the Office of Naval Research; grant numbers N00014-09-1-0162 (LC) and N00014-10-1-0053 (PL)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, L., Loughlin, P. The conditional Weyl transform and its generalization. J. Pseudo-Differ. Oper. Appl. 4, 1–12 (2013). https://doi.org/10.1007/s11868-012-0059-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-012-0059-4

Keywords

Mathematics Subject Classification (2000)

Navigation