Skip to main content

Advertisement

Log in

Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma

  • Lymphoma (JW Sweetenham, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Treatment for relapsed/refractory (R/R) Hodgkin and non-Hodgkin lymphoma remains challenging. The introduction of rituximab to B cell non-Hodgkin lymphoma (B-NHL) treatment significantly improved patients’ response rate and survival; however, approximately one third of patients with diffuse large B cell lymphoma, the most common B-NHL subtype, still have a relapse or become refractory after first-line therapy. More recently, antibody therapies and small-molecule inhibitors were approved for treating R/R lymphomas; these agents include brentuximab vedotin, ibrutinib, and idelalisib. Immune checkpoint inhibitors and other immune therapies are emerging treatments currently being evaluated in various clinical trials for their efficacy against lymphoid malignancies. Striking results from these treatment modalities have been observed in solid tumors, and evidence is accumulating to support their use in various lymphomas. The most exciting results from immune checkpoint inhibitor therapy have been seen in patients with R/R Hodgkin lymphoma, in whom the overall response rate has reached 60–80 %. Results in NHL are more similar to those seen in other solid malignancies, ranging between 20 and 40 %, depending on the histology. Formal approval of these drugs is being awaited, as are the results of combination therapy with checkpoint inhibitors and other treatment modalities, including conventional chemotherapy, small-molecule inhibitors, and other immune therapies. Although response rates have been promising, attention must be paid to the management of unique immune-related adverse events, which warrant close monitoring in some cases. Identification of biomarkers that predict response or severe adverse events using either the tumor specimen or peripheral blood would aid in selecting patients suited for these types of treatment as well as determining the ideal sequence of treatment within the realm of immune therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol. 2003;81:106–13.

    Article  CAS  PubMed  Google Scholar 

  2. Horowitz M, Gale R, Sondel P, Goldman J, Kersey J, Kolb H, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    CAS  PubMed  Google Scholar 

  3. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  5. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015.

  6. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33:1430–7.

    Article  CAS  PubMed  Google Scholar 

  7. McDermott DF, Drake CG, Sznol M, Choueiri TK, Powderly JD, Smith DC, et al. Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol. 2015.

  8. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  Google Scholar 

  9. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    Article  PubMed  Google Scholar 

  10. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015.

  11. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9. This is the first published report to show the efficacy of PD-1 blockade with nivolumab in patients with HL.

    Article  PubMed  Google Scholar 

  14. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535–43.

    Article  CAS  PubMed  Google Scholar 

  15. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1:793–801.

    Article  CAS  PubMed  Google Scholar 

  16. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.

    Article  CAS  PubMed  Google Scholar 

  20. Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18:1611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17:4232–44.

    Article  CAS  PubMed  Google Scholar 

  22. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Upadhyay R, Hammerich L, Peng P, Brown B, Merad M, Brody JD. Lymphoma: immune evasion strategies. Cancer. 2015;7:736–62.

    Article  Google Scholar 

  25. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14:3044–51.

    Article  CAS  PubMed  Google Scholar 

  26. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31:4199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15:69–77.

    Article  CAS  PubMed  Google Scholar 

  28. Ansell S, Armand P, Timmerman JM, Shipp MA, Bradley Garelik MB, Zhu L, et al. Nivolumab in patients (Pts) with relapsed or refractory classical Hodgkin lymphoma (R/R cHL): clinical outcomes from extended follow-up of a phase 1 study (CA209-039). Blood. 2015;126:583.

    Google Scholar 

  29. Timmerman J, Armand P, Lesokhin AM, Halwani A, Millenson MM, Schuster SJ, et al. Nivolumab in patients with relapsed or refractory lymphoid malignancies and classical Hodgkin Lymphoma: updated results of a phase 1 study (CA209-039). Hematol Oncol. 2015;33:100–80.

    Article  Google Scholar 

  30. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. This study shows that mismatch repair deficiency may be a potential biomarker of response in patients with colon cancer treated with pembrolizumab. Its utility has not yet been evaluated in lymphoid malignancies.

    Article  CAS  PubMed  Google Scholar 

  31. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8. This study shows that lung cancer patients with higher mutational burden in their tumors have a higher response to treatment with pembrolizumab.

    Article  CAS  PubMed  Google Scholar 

  32. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210:1389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A. 2015;112:E966–72. This study provides the rationale for combination therapy with checkpoint inhibitors and ibrutinib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moskowitz CH, Ribrag V, Michot J-M, Martinelli G, Zinzani PL, Gutierrez M, et al. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013). Blood. 2014;124:290.

    Google Scholar 

  36. Armand P, Shipp MA, Ribrag V, Michot J-M, Zinzani PL, Gutierrez M, et al. PD-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: safety, efficacy, and biomarker assessment. Blood. 2015;126:584.

    Google Scholar 

  37. Ribas A, Robert C, Hodi FS, Wolchok JD, Joshua AM, Hwu W-J, et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. ASCO Meet Abstr. 2015;33:3001.

    Google Scholar 

  38. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113:1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davids MS, Kim HT, Costello CL, Avigan D, Chen Y-B, Armand P, et al. A multicenter phase I study of CTLA-4 blockade with ipilimumab for relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Blood. 2014;124:3964.

    Article  Google Scholar 

  40. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15:6446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stewart R, Morrow M, Hammond SA, Mulgrew K, Marcus D, Poon E, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immun Res. 2015;3:1052–62.

    Article  CAS  Google Scholar 

  42. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7. This study evaluated the efficacy and safety of MPDL3280A in various cancers and showed that a high level of PD-L1 expression may be associated with treatment response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res. 2013;19:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90:720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118:4817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Porter DL, Kalos M, Frey NV, Grupp SA, Loren AW, Jemison C, et al. Chimeric antigen receptor modified T cells directed against CD19 (CTL019 cells) have long-term persistence and induce durable responses in relapsed, refractory CLL. Blood. 2013;122:4162.

    Article  Google Scholar 

  48. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Porter DL, Frey NV, Melenhorst JJ, Hwang W-T, Lacey SF, Shaw P, et al. Randomized, phase II dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Blood. 2014;124:1982.

    Google Scholar 

  50. Kochenderfer JN, Dudley ME, Stetler-Stevenson M, Wilson WH, Janik JE, Nathan DAN, et al. A phase I clinical trial of treatment of B-cell malignancies with autologous anti-CD19-CAR-transduced T cells. Blood. 2010;116.

  51. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol : Off J Am Soc Clin Oncol. 2015;33:540–9. This study showed the efficacy of anti-CD19 CAR T cells against DLBCL and other B-cell malignancies.

    Article  CAS  Google Scholar 

  52. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Landsburg DJ, et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2015;126:183.

    Google Scholar 

  54. Turtle CJ, Berger C, Sommermeyer D, Hanafi L-A, Pender B, Robinson EM, et al. Anti-CD19 chimeric antigen receptor-modified T cell therapy for B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood. 2015;126:184.

    Google Scholar 

  55. Sauter CS, Riviere I, Bernal Y, Wang X, Purdon T, Yoo S, et al. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CAR-T) post-high dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL). ASCO Meet Abstr. 2015;33:8515.

    Google Scholar 

  56. Ramos CA, Ballard B, Liu E, Dakhova O, Mei Z, Liu H, et al. Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas. Blood. 2015;126:185.

    Article  Google Scholar 

  57. Ruella M, Kenderian SS, Shestova O, Chen T, Scholler J, Wasik MA, et al. Novel chimeric antigen receptor T cells for the treatment of Hodgkin lymphoma. Blood. 2014;124:806.

    Google Scholar 

  58. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7:280ps7.

    Article  PubMed  Google Scholar 

  60. Lameris R, de Bruin RCG, Schneiders FL, van Bergen en Henegouwen PMP, Verheul HMW, de Gruijl TD, et al. Bispecific antibody platforms for cancer immunotherapy. Crit Rev Oncol/Hematol. 2014;92:153–65.

    Article  Google Scholar 

  61. Nagorsen D, Kufer P, Baeuerle PA, Bargou R. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136:334–42.

    Article  CAS  PubMed  Google Scholar 

  62. Goebeler ME, Knop S, Viardot A, Kufer P, Topp MS, Einsele H, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol : Off J Am Soc Clin Oncol. 2016. This phase I study evaluated the safety of blinatumomab in patients with NHL.

  63. Viardot A, Goebeler ME, Hess G, Neumann S, Pfreundschuh M, Adrian N, et al. Phase 2 study of bispecific T-cell engager (BiTE(R)) antibody blinatumomab in relapsed/refractory diffuse large B cell lymphoma. Blood. 2016. This phase II study evaluated the efficacy of blinatumomab in R/R DLBCL.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Younes MD.

Ethics declarations

Conflict of Interest

Eri Matsuki declares that she has no conflict of interest.

Anas Younes has received research support through grants from Novartis, Johnson & Johnson, and Curis and has received honoraria from Bayer, Merck, Bristol-Myers Squibb, Celgene, Incyte, Janssen R&D, Sanofi, Seattle Genetics, and Takeda Millennium.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lymphoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuki, E., Younes, A. Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr. Treat. Options in Oncol. 17, 31 (2016). https://doi.org/10.1007/s11864-016-0401-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-016-0401-9

Keywords

Navigation