Skip to main content
Log in

Folding kinetics of HDV ribozyme with C13A:G82U and A16U:U79A mutations

  • Biology and Enviromental Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Gene mutations influence the folding kinetics of hepatitis delta virus (HDV) ribozyme. In this work, we study the effect of the double mutation on the folding kinetics of HDV ribozyme. By using the master equation method combined with RNA folding free energy landscape, we predict the folding kinetics of C13A:G82U and A16U:U79A mutated HDV sequences. Their folding pathways are identified by recursively searching the states with high net flux-in(out) population starting from the native state. The results indicate that the folding kinetics of C13A:G82U mutation sequence is bi-phasic, which is similar to the wild type (wtHDV) sequence. While the folding kinetics of A16U:U79A mutation sequence is mono-phasic, it quickly folds to the native state in 30 s. Thus, the folding kinetics of double mutated HDV ribozyme depends on the mutation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarado-Mora M V, Locarnini S, Rizzetto M, et al. An update on HDV: Virology, pathogenesis and treatment [J]. Antiviral Therapy, 2013, 18(3): 541–548.

    Article  PubMed  Google Scholar 

  2. Rizzetto M, Canese M G, Ariò S, et al. Immunofluorescence detection of new antigen-antibody system (d/anti-d) associated to hepatitis B virus in liver and in serum of HBsAg carriers [J]. Gut, 1977, 18(2): 997–1003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Noureddin M, Gish R. Hepatitis delta: Epidemiology, diagnosis and management 36 years after discovery [J]. Curr Gastroenterol Rep, 2014, 16(1): 365.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kapral G J, Jain S, Doudna J A, et al. New tools provide a second look at HDV ribozyme structure, dynamics and cleavage [J]. Nucleic Acids Research, 2014, 42(20): 12833–12846.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Perrotta A T, Been M D. The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant [J]. Nucl Acids Res, 1990, 18(23): 6821–6827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chadalavada D M, Cerrone-szakal A L, Bevilacqua P C. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions [J]. RNA, 2007, 13(12): 2189–2201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chadalavada D M, Senchak S E, Bevilacqua P C. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots [J]. Journal of Molecular Biology, 2002, 317(4): 559–575.

    Article  CAS  PubMed  Google Scholar 

  8. Thaplyal P, Ganguly A, Hammes-Schiffer S, et al. Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density [J]. Biochemistry, 2015, 54(12): 2160–2175.

    Article  CAS  PubMed  Google Scholar 

  9. Been M, Perrotta A, Rosenstein S. Secondary structure of the self-cleaving RNA of hepatitis delta virus: applications to catalytic RNA design [J]. Biochemistry, 1992, 31(47): 11843–11852.

    Article  CAS  PubMed  Google Scholar 

  10. Wu H N, Lee J Y, Huang H W, et al. Mutagenesis analysis of ribozyme a hepatitis delta virus genomic [J]. Nucl Acids Res, 1993, 21(18): 4193–4199.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tanner N K, Schaff S, Thill G, et al. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses [J]. Curr Biol, 1994, 4(6): 488–498.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar P K, Suhl Y A, Miyashiro H, et al. Random mutations to evaluate the role of bases at two important single-stranded regions of genomic HDV ribozyme [J]. Nucl Acids Res, 1992, 20(15): 3919–3924.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen J W, Gong S, Wang Y J, et al. Kinetic partitioning mechanism of HDV ribozyme folding [J]. The Journal of Chemical Physics, 2014, 140(2): 025102.

    Article  PubMed  Google Scholar 

  14. Zhao P N, Zhang W B, Chen S J. Predicting secondary structural folding kinetics for nucleic acids [J]. Biophysical Journal, 2010, 98(8): 1617–1625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhang W B, Chen S. Master equation approach to finding the rate-limiting steps in biopolymer folding [J]. The Journal of Chemical Physics, 2003, 118(7): 3413–3420.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhao P N, Zhang W B, Chen S J. Cotranscriptional folding kinetics of ribonucleic acid secondary structures [J]. The Journal of Chemical Physics, 2011, 135(24): 245101.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mathews D H, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure [J]. Journal of Molecular Biology, 1999, 288(5): 911–940.

    Article  CAS  PubMed  Google Scholar 

  18. Xia T, Santalucia J, Burkard M E, et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with watson-crick base pairs [J]. Biochemistry, 1998, 37(42): 14719–14735.

    Article  CAS  PubMed  Google Scholar 

  19. Rivas E, Eddy S R. A dynamic programming algorithm for RNA structure prediction including pseudoknots [J]. Journal of Molecular Biology, 1999, 285(5): 2053–2068.

    Article  CAS  PubMed  Google Scholar 

  20. Rietveld K, Bosch L, Pleij C. A new principle of RNA folding based on pseudoknotting [J]. Nucl Acids Res, 1985, 13(5): 1717–1731.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dam E, Pleij K, Draper D. Structural and functional aspects of RNA pseudoknots [J]. Biochemistry, 1992, 31(47): 11665–11675.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W B, Chen S J. Exploring the complex folding kinetics of RNA hairpins: I. General folding kinetics analysis [J]. Biophysical Journal, 2006, 90(3): 765–777.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang W B, Chen S J. Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states [J]. Biophysical Journal, 2006, 90(3): 778–787.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tan Z J, Chen S J. Salt contribution to RNA tertiary structure folding stability [J]. Biophysical Journal, 2011, 101(1): 176–187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tan Z J, Chen S J. Predicting ion binding properties for RNA tertiary structures [J]. Biophysical Journal, 2010, 99(5): 1565–1576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Zhang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (31270761)

Biography: ZOU Yanjuan, female, Master candidate, research direction: RNA folding kinetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Wang, Y., Gong, S. et al. Folding kinetics of HDV ribozyme with C13A:G82U and A16U:U79A mutations. Wuhan Univ. J. Nat. Sci. 20, 421–429 (2015). https://doi.org/10.1007/s11859-015-1115-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-015-1115-8

Keywords

CLC number

Navigation