Skip to main content
Log in

Polycomb group genes as the key regulators in gene silencing

  • Review
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The Polycomb group (PcG) genes repress gene expression mainly through chromatin modifications and regulation of chromatin structure. At present, at least four protein complexes of PcG proteins are identified, including Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), PHO-repressive complex (PhoRC) and Polycomb repressive deubiquitinase (PR-DUB). In this review, the recent discoveries of the composition of the above complexes, as well as their roles in regulating histone modifications and gene silencing are discussed. We mainly focus on the composition of PRC1 and PRC2 complex and recruitment of PcG to target genes and mechanisms of PRC1 and PRC2-mediated gene silencing. Although much progress has been made in understanding gene silencing mediated by PcG proteins, we also discuss several important questions that still remained unanswered, such as the inheritance of histone modifications during cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life [J]. Nature, 2011, 469(7330): 343–349.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gutierrez L, Oktaba K, Scheuermann J C, et al. The role of the histone H2A ubiquitinase Sce in Polycomb repression [J]. Development, 2012, 139(1): 117–127.

    Article  CAS  PubMed  Google Scholar 

  3. Simon J A, Kingston R E. Mechanisms of Polycomb gene silencing: knowns and unknowns [J]. Nat Rev Mol Cell Biol, 2009, 10(10): 697–708.

    CAS  PubMed  Google Scholar 

  4. Schwartz Y B, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes [J]. Nat Rev Genet, 2007, 8(1): 9–22.

    Article  CAS  PubMed  Google Scholar 

  5. Mills A A. Throwing the cancer switch: Reciprocal roles of polycomb and trithorax proteins [J]. Nat Rev Cancer, 2010, 10(10): 669–682.

    Article  CAS  PubMed  Google Scholar 

  6. Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity [J]. Development, 2007, 134(2): 223–232.

    Article  CAS  PubMed  Google Scholar 

  7. Luis N M, Morey L, Di Croce L, et al. Polycomb in stem cells: PRC1 branches out [J]. Cell Stem Cell, 2012, 11(1): 16–21.

    Article  CAS  PubMed  Google Scholar 

  8. Julie K S S G, Miguel C, Emily B, et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells [J]. Nature Cell Biology, 2007, 9(12): 1428–1435.

    Article  Google Scholar 

  9. Wu X, Johansen J V, Helin K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation [J]. Mol Cell, 2013, 49(6): 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  10. Hu H, Yang Y, Ji Q, et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis [J]. Cancer Cell, 2012, 22(6): 781–795.

    Article  CAS  PubMed  Google Scholar 

  11. Vazquez J, Muller M, Pirrotta V, et al. The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila [J]. Mol Biol Cell, 2006, 17(5): 2158–2165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Isono K, Endo T A, Ku M, et al. SAM Domain polymerization links subnuclear clustering of PRC1 to gene silencing [J]. Dev Cell, 2013, 26(6): 565–577.

    Article  CAS  PubMed  Google Scholar 

  13. Tavares L, Dimitrova E, Oxley D, et al. RYBP-PRC1 complexes mediate H2Aubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 [J]. Cell, 2012, 148 (4): 664–678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Morey L, Aloia L, Cozzuto L, et al. RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells [J]. Cell Rep, 2013, 3(1): 60–69.

    Article  CAS  PubMed  Google Scholar 

  15. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex [J]. Mol Cell, 2004, 15(1): 57–67.

    Article  CAS  PubMed  Google Scholar 

  16. Kim H, Kang K, Kim J. AEBP2 as a potential targeting protein for Polycomb repression complex PRC2 [J]. Nucleic Acids Res, 2009, 37(9): 2940–2950.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maxim N, Tetyana K, Sven F, et al. Pcl-PRC2 is needed to generate high levels of H3-K27trimethylation at Polycomb target genes [J]. The EMBO Journal, 2007, 26(18): 4078–4088.

    Article  Google Scholar 

  18. Walker E, Chang W Y, Hunkapiller J, et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation [J]. Cell Stem Cell, 2010, 6(2): 153–166.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sarma K, Margueron R, Ivanov A, et al. Ezh2 requires PHF1 to efficiently catalyze H3lysine 27 trimethylation in vivo [J]. Mol Cell Biol, 2008, 28(8): 2718–2731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li G, Margueron R, Ku M, et al. Jarid2 and PRC2, partners in regulating gene expression [J]. Genes Dev, 2010, 24(4): 368–380.

    Article  PubMed  Google Scholar 

  21. Peters A H, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin [J]. Mol Cell, 2003, 12(6): 1577–1589.

    Article  CAS  PubMed  Google Scholar 

  22. Boyer L A, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells [J]. Nature, 2006, 441(7091): 349–353.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Brown J L, Cao R, et al. Hierarchical recruitment of polycomb group silencing complexes [J]. Mol Cell, 2004, 14(5): 637–646.

    Article  CAS  PubMed  Google Scholar 

  24. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb group silencing [J]. Science, 2002, 298(5595): 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  25. Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing [J]. Mol Cell, 2005, 20(6): 845–854.

    Article  CAS  PubMed  Google Scholar 

  26. Lee M G, Villa R, Trojer P, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination [J]. Science, 2007, 318(5849): 447–450.

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz Y B, Kahn T G, Nix D A, et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster [J]. Nat Genet, 2006, 38(6): 700–705.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X D, Han X, Chew J L, et al. Whole-genome mapping of histone H3 Lys4 and 27trimethylations reveals distinct genomic compartments in human embryonic stem cells [J]. Cell Stem Cell, 2007, 1(3): 286–298.

    Article  CAS  PubMed  Google Scholar 

  29. Kanhere A, Viiri K, Araujo C C, et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2 [J]. Mol Cell, 2010, 38(5): 675–688.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Czermin B, Melfi R, McCabe D, et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites [J]. Cell, 2002, 111(2): 185–196.

    Article  CAS  PubMed  Google Scholar 

  31. Muller J, Hart C M, Francis N J, et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex [J]. Cell, 2002, 111(2): 197–208.

    Article  CAS  PubMed  Google Scholar 

  32. Margueron R, Li G, Sarma K, et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms [J]. Mol Cell, 2008, 32(4):503–518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mousavi K, Zare H, Wang A H, et al. Polycomb protein Ezh1 promotes RNA polymerase II elongation [J]. Mol Cell, 2012, 45(2): 255–262.

    Article  CAS  PubMed  Google Scholar 

  34. Lee S T, Li Z, Wu Z, et al. Context-specific regulation of NF-kappa B target gene expression by EZH2 in breast cancers [J]. Mol Cell, 2011, 43(5): 798–810.

    Article  CAS  PubMed  Google Scholar 

  35. Xu K, Wu Z J, Groner A C, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent [J]. Science, 2012, 338(6113): 1465–1469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jung H Y, Jun S, Lee M, et al. PAF and EZH2 induce Wnt/beta-Catenin signaling hyper activation [J]. Mol Cell, 2013, 52(2): 193–205.

    Article  CAS  PubMed  Google Scholar 

  37. Muller J, Kassis J A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila [J]. Curr Opin Genet Dev, 2006, 16(5): 476–484.

    Article  PubMed  Google Scholar 

  38. Brown J L, Fritsch C, Mueller J, et al. The Drosophila pholike gene encodes a YY1related DNA binding protein that is redundant with pleiohomeoticin homeotic gene silencing [J]. Development, 2003, 130(2): 285–294.

    Article  CAS  PubMed  Google Scholar 

  39. Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs [J]. Mol Genet Genomics, 2008, 279(6): 595–603.

    Article  CAS  PubMed  Google Scholar 

  40. Rinn J L, Kertesz M, Wang J K, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs [J]. Cell, 2007, 129(7): 1311–1323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Payer B, Lee J T. X chromosome dosage compensation: how mammals keep the balance [J]. Annu Rev Genet, 2008, 42: 733–772.

    Article  CAS  PubMed  Google Scholar 

  42. Wutz A, Rasmussen T P, Jaenisch R. Chromosomal silencing and localization are mediatedby different domains of Xist RNA [J]. Nat Genet, 2002, 30(2): 167–174.

    Article  CAS  PubMed  Google Scholar 

  43. Banaszynski L A, Wen D, Dewell S, et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells [J]. Cell, 2013, 155(1): 107–120.

    Article  CAS  PubMed  Google Scholar 

  44. Klymenko T, Papp B, Fischle W, et al. A Polycomb group protein complex with sequence specific DNA-binding and selective methyl-lysine-binding activities [J]. Genes Dev, 2006, 20(9): 1110–1122.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Brown J L, Cao R, et al. Hierarchical recruitment of polycomb group silencing complexes [J]. Mol Cell, 2004, 14(5): 637–646.

    Article  CAS  PubMed  Google Scholar 

  46. Scheuermann J C, de Ayala Alonso A G, Oktaba K, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB [J]. Nature, 2010, 465 (7295): 243–247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nijman S M, Luna-Vargas M P, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes [J]. Cell, 2005, 123(5): 773–786.

    Article  CAS  PubMed  Google Scholar 

  48. Yuan W, Wu T, Fu H, et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation [J]. Science, 2012, 337(6097): 971–975.

    Article  CAS  PubMed  Google Scholar 

  49. Xu M, Long C, Chen X, et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly [J]. Science, 2010, 328(5974): 94–98.

    Article  CAS  PubMed  Google Scholar 

  50. Kleer C G, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells [J]. Proc Natl Acad Sci USA, 2003, 100(20): 11606–11611.

    Article  CAS  PubMed  Google Scholar 

  51. Bachmann I M, Halvorsen O J, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast [J]. J Clin Oncol, 2006, 24(2): 268–273.

    Article  CAS  PubMed  Google Scholar 

  52. Knutson S K, Wigle T J, Warholic N M, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells [J]. Nat Chem Biol, 2012, 8(11): 890–896.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wu.

Additional information

Foundation item: Supported by the National Key Basic Research Program of China (973 Program) (2011CB504206, 2012CB518700), the National Natural Science Foundation of China (91019013, 31221061, 31200653 and 31370866), Program for New Century Excellent Talents in University (NCET-11-0410)

Biography: SU Shuaikun, male, Ph.D. candidate, research direction: biochemistry and molecular biology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, S., Zhang, M., Li, L. et al. Polycomb group genes as the key regulators in gene silencing. Wuhan Univ. J. Nat. Sci. 19, 1–7 (2014). https://doi.org/10.1007/s11859-014-0971-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0971-y

Key words

CLC number

Navigation