Skip to main content
Log in

An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: triangular numbers

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils’ spontaneous production using a triangular numbers activity. Based on a specific collaborative learning methodology, this study explores the possibility of constructing an Arithmetic-Algebraic Work Space around the process of constructing signs as framed by both activity theory and a technological approach, showing the spontaneous representations produced by seventh grade pupils and their evolution in a socio-cultural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147–176.

    Article  Google Scholar 

  • Bednarz, N., & Janvier, B. (1996). A problem solving perspective on the introduction of algebra. In N. Bernarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: perspectives for research and teaching (pp. 115–136). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: perspectives for research and teaching. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Blanton, M-L. & Kaput, J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization: a global dialogue from multiple perspectives (pp. 5–23). Springer.

  • Bourdieu, P. (1980). Le sens pratique. Paris: Éditions de Minuit.

    Google Scholar 

  • Britt, M., & Irwin, J. (2011). Algebraic thinking and without algebraic representation: a pathway for learning. In J. Cai & E. Knuth (Eds.), Early algebraization: a global dialogue from multiple perspectives (pp. 137–160). New York: Springer.

    Chapter  Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. 1970–1990, In Balacheff, N., Cooper, M., Sutherland, R. & Warfield, V. (Eds. and Trans.) Dordrecht: Kluwer.

  • Brownell W-A. (1942). Problem solving. In N.B. Henry (Ed.), The psychology of Learning (41st Yearbook of the National Society for the Study of Education. Part 2). Chicago: University of Chicago press.

  • Brownell, W. A. (1947). The place and meaning in the teaching of arithmetic. The Elementary School Journal, 4, 256–265.

    Article  Google Scholar 

  • Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: a global dialogue from multiple perspectives. New York: Springer.

    Google Scholar 

  • Carpenter, T., Ansell, E., Franke, M., Fennema, E., & Weisbeck, L. (1993). Models of problem-solving: a study of kindergarden children’s problem-solving process. Journal for Research in Mathematics Education., 24, 429–441.

    Article  Google Scholar 

  • Carpenter, T. & Franke, M. (2001). Developing algebraic reasoning in the elementary school. Generalization and proof. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), The future of the teaching and learning of algebra (Proceedings of the 12th ICMI Study Conference, pp. 155–162). Melbourne: The University of Melbourne.

  • Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115.

    Google Scholar 

  • CIEAEM. (1987). Compte rendu de la 39 e rencontre internationale de la CIEAEM, Sherbrooke.

  • Cooper, T., & Warren, E. (2011). Students’ ability to generalise: Models, representations and theory for teaching and learning. In J. Cai & E. Knuth (Eds.), Early algebraization: a global dialogue from multiple perspectives (pp. 187–214). New York: Springer.

    Chapter  Google Scholar 

  • Cortés C. & Hitt F. (2012). Poly. Applet pour la construction des nombres polygonaux. UMSNH.

  • Cortés J-C., Hitt F. & Saboya M. (2014). De la aritmética al álgebra: Números Triangulares, Tecnología y ACODESA. REDIMAT, 3(3), 220–252. doi:10.4471/redimat.2014.52.

  • Duval, R. (2003). Voir en mathématiques. In F. Filloy, F. Hitt, C. Imaz, A. Rivera, & S. Ursini (Eds.), Matemática Educativa: Aspectos de la investigación actual (pp. 19–50). México: Fondo de Cultura Económica.

    Google Scholar 

  • Eco, U. (1992). [1975] La production des signes. Paris: Livre de Poche.

    Google Scholar 

  • Filloy, E & Rojano, T. (1989). Solving equations: the transition from arithmetic to algebra. For the Learning of Mathematics, 9(2).

  • Goupille C. & Thérien L. (1987). The role errors play in the learning and teaching of mathematics. Proceedings CIEAEM39, Sherbrooke.

  • Healy, L., & Sutherland, R. (1990). The use of spreadsheets within the mathematics classroom. International Journal of Mathematics Education in Science and Technology, 21(6), 847–862.

    Article  Google Scholar 

  • Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59–78.

    Article  Google Scholar 

  • Hitt, F. (1994). Visualization, anchorage, availability and natural image: polygonal numbers in computer environments. International Journal of Mathematics Education in Science and Technology, 25(3), 447–455.

    Article  Google Scholar 

  • Hitt, F. (2006). Students’ functional representations and conceptions in the construction of mathematical concepts. An example: the concept of limit. Annales de Didactique et de Sciences Cognitives, 11, 253–268. (Strasbourg).

    Google Scholar 

  • Hitt, F. (2013). Théorie de l’activité, interactionnisme et socioconstructivisme. Quel cadre théorique autour des représentations dans la construction des connaissances mathématiques? Annales de Didactique et de Sciences Cognitives, 18, 9–27. (Strasbourg).

    Google Scholar 

  • Hitt, F., & González-Martín, A. (2015). Covariation between variables in a modelling process: the ACODESA (Collaborative learning, Scientific debate and Self-reflexion) method. Educational Studies in Mathematics, 88(2), 201–219.

    Article  Google Scholar 

  • Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment with tasks designed from a task-technique-theory perspective. International Journal of Computers for Mathematical Learning, 14, 121–152.

    Article  Google Scholar 

  • Houdement, C., & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de la géométrie. Annales de Didactique et de Sciences Cognitives, 11, 175–193.

    Google Scholar 

  • Kaput, J. (1995). Transforming algebra from an engine of inequity to an engine of mathematical power by ‘‘algebrafying’’ the K-12 curriculum. Paper presented at the Annual Meeting of the National Council of Teachers of Mathematics, Boston.

  • Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of mathematical power by ‘algebrafying’ the K-12 curriculum. The nature and role of algebra in the K-14 curriculum (pp. 25–26). Washington: National Council of Teachers of Mathematics and the Mathematical Sciences Education Board, National Research Council.

    Google Scholar 

  • Kaput, J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. National Center for Improving Student Learning and Achievement in Mathematics and Science. Dartmouth. (ERIC Service No. ED 441 664).

  • Karsenty, R. (2003). What adults remember from their high school mathematics? The case of linear functions. Educational Studies in Mathematics., 51, 117–144.

    Article  Google Scholar 

  • Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. K. Lester Jr (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Greenwich: Information Age Publishing.

    Google Scholar 

  • Kuzniak, A. (2011). L’espace de travail mathématique et ses genèses. Annales de Didactique et de Sciences Cognitives, 16, 9–24.

    Google Scholar 

  • Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bernarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: perspectives for research and teaching (pp. 87–106). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Lee, L., & Wheeler, D. (1989). The arithmetic connection. Educational Studies in Mathematics, 20, 41–54.

    Article  Google Scholar 

  • Lins, R., & Kaput, J. (2004). The early development of algebraic reasoning: the courrent state of the field. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra (pp. 45–70). Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

  • Malle, G. (1993). Didaktische Probleme der Elementaren Algebra. Braunschweig/Wiesbaden: Vieweg.

    Book  Google Scholar 

  • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bernarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: perspectives for research and teaching (pp. 65–86). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Prusak, N., Hershkowits, R., & Schwarz, B. (2013). Conceptual learning in a principled design problem solving environment. Research in Mathematics Education, 15(3), 266–285.

    Article  Google Scholar 

  • Radford, L. (1996). Some reflexions on teaching algebra through generalization. In N. Bernarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: perspectives for research and teaching (pp. 107–111). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: a semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebrization, advances in mathematics education (pp. 303–322). Dordrecht: Kluwer.

    Google Scholar 

  • Saboya, M. (2010). Élaboration et analyse d’une intervention didactique co-construite entre chercheur et enseignant, visant le développement d’un contrôle sur l’activité mathématique chez les élèves du secondaire. Thèse de doctorat non publiée, Université du Québec à Montréal.

  • Saboya, M., Bernarz, N., & Hitt, F. (2015). Le contrôle exercé en algèbre: analyse de ses manifestations chez les élèves, éclairage sur sa conceptualisation. Partie 1: La résolution de problèmes. Annales de Didactique et de Sciences Cognitives, 20, 61–100.

    Google Scholar 

  • Schliemann, A., Carraher, D., & Brizuela, B. (2012). Algebra in elementary school. In L. Coulange & J.-P. Drouchard (Eds.), Enseignement de l’algèbre élémentaire (pp. 107–122). Paris: Éditions La Pensée Sauvage.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: human development, the growth of discourse, and mathematizing. New York: Cambridge University Press.

    Book  Google Scholar 

  • Thompson, P. (2002). Some remarks on conventions and representations. In F. Hitt (Ed.), Mathematics Visualisation and Representations (pp. 199–206). Psychology of Mathematics Education North American Chapter and Cinvestav-IPN. Mexico.

  • Vergnaud, G. (1988). Long terme et court terme dans l’apprentissage de l’algèbre. In C. Laborde (Ed.), Actes du Premier Colloque Franco-Allemand de Didactique des Mathématiques et de l’informatique (pp. 189–199). La Pensée Sauvage: Grenoble.

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(23), 133–170.

    Google Scholar 

  • Verschaffel, L., & De Corte, E. (1996). Number and arithmetic. In A. J. Bishop, et al. (Eds.), International handbook of mathematical education (pp. 99–137). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Voloshinov, V.N. (1973). Marxism and the philosophy of language. Translated by Matejka L. & Titunik I. R. Cambridge: Harvard University Press.

  • Wille, A. (2008). Aspects of the concept of a variable in imaginary dialogues written by pupils. In O. Figueras, J.-L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings PME32 and PME-NA30 (Vol. 4, pp. 417–424). México: Cinvestav-UMSNH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hitt.

Appendix: Pentagonal numbers

Appendix: Pentagonal numbers

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitt, F., Saboya, M. & Cortés Zavala, C. An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: triangular numbers. ZDM Mathematics Education 48, 775–791 (2016). https://doi.org/10.1007/s11858-015-0749-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0749-5

Keywords

Navigation