Skip to main content
Log in

Design research with a focus on learning processes: an overview on achievements and challenges

  • Survey Paper
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Design research continues to gain prominence as a significant methodology in the mathematics education research community. This overview summarizes the origins and the current state of design research practices focusing on methodological requirements and processes of theorizing. While recognizing the rich variations in the foci and scale of design research, it also emphasizes the fundamental core of understanding and investigating learning processes. That is why the article distinguishes two archetypes of design research, one being focused on curriculum innovations, one being focused on developing theories on the learning processes, which is the main focus of the thematic issue. For deepening the methodological discussion on design research, it is worth to distinguish aims and quality criteria along the archetypes and elaborate achievement and challenges for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamson, D. (2015). Reinventing learning: A design-research odyssey. ZDM Mathematics Education,. doi:10.1007/s11858-014-0646-3. (this issue).

    Google Scholar 

  • Ackermann, E. (1995). Construction and transference of meaning through form. In L. P. Steffe & G. Steffe (Eds.), Constructivism in education (pp. 341–354). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Artigue, M. (1992). Didactical engineering. In R. Douady & A. Mercier (Eds.), Recherches en didactique des mathématiques. Selected papers (pp. 41–70). Grenoble: La Pensèe Sauvage.

  • Artigue, M. (2015). Perspectives on design research: The case of didactical engineering. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 467–496). New York: Springer.

    Google Scholar 

  • Assude, T., Boero, P., Herbst, P., Lerman, S., & Radford, L. (2008). The notions and roles of theory in mathematics education research—a survey. In ICME (Ed.), Proceedings of ICME 11 in Monterrey, Mexico (pp. 338–356). ICME: http://www.mathunion.org/fileadmin/ICMI/files/About_ICMI/Publications_about_ICMI/ICME_11/Assude.pdf. Accessed 26 April 2015.

  • Bakker, A., & Van Eerde, H. A. A. (2015). An introduction to design based research with an example from statistics education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Doing qualitative research: Methodology and methods in mathematics education (pp. 429–466). New York: Springer.

    Google Scholar 

  • Ball, D. L., & Cohen, D. K. (1996). Reform by the book: what is—or might be—the role of curriculum materials in teacher learning and instructional reform? Educational Researcher, 25(6–8), 14.

    Google Scholar 

  • Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14.

    Article  Google Scholar 

  • Brousseau, G. (1983). Les obstacles épistémologique et les problèmes en mathématiques. Revue Internationale de Philosophie Recherches en Didactique des Mathématiques, 4, 165–198.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.

    Google Scholar 

  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.

    Article  Google Scholar 

  • Brown, A. L., & Campione, J. C. (1996). Psychological theory and the design of innovative learning environments: On procedures, principles, and systems. In L. Schauble & R. Glaser (Eds.), Innovations in learning: New environments for education (pp. 289–325). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: Toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32(9), 3–14.

    Article  Google Scholar 

  • Cazden, C. (2001). Classroom discourse. Portsmouth: Heinemann.

    Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • Cobb, P., & Jackson, K. (2015). Supporting teachers’ use of research-based instructional sequences. ZDM Mathematics Education,. doi:10.1007/s11858-015-0692-5. (this issue).

    Google Scholar 

  • Cobb, P., Jackson, K., & Dunlap, C. (2015). Design research: An analysis and critique. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed.) (pp. 481–503). New York: Routledge.

  • Cobb, P., & McClain, K. (2004). Principles of Instructional Design for Supporting the Development of Students’ Statistical Reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy—reasoning and thinking (pp. 375–396). Boston: Kluwer.

    Chapter  Google Scholar 

  • Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), 83–95.

    Article  Google Scholar 

  • Collins, A. (1992). Toward a design science of education. In E. Scanlon & T. O’Shea (Eds.), New directions in educational technology (pp. 15–22). New York: Springer.

    Chapter  Google Scholar 

  • Confrey, J. (1990). A review of the research on student conceptions in mathematics, science and programming. Review of Research in Education, 16, 3–56.

    Google Scholar 

  • Confrey, J. (1991). Learning to listen: A student’s understanding of powers of ten. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 111–138). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Confrey, J. (2006). The evolution of design studies as methodology. In K. R. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 135–152). New York: Cambridge University Press.

    Google Scholar 

  • Confrey, J., & Kazak, S. (2006). A thirty-year reflection on constructivism in mathematics education. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 305–345). Rotterdam: Sense Publishers.

    Google Scholar 

  • Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture-driven research design. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 231–266). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Confrey, J., & Maloney, A. (2015). A design study of a curriculum and diagnostic assessment system for a learning trajectory on equipartitioning. ZDM Mathematics Education, 47(6). doi:10.1007/s11858-015-0699-y (this issue).

    Google Scholar 

  • Daro, P., Mosher, F. A., & and Corcoran, T. (2011). Learning trajectories in mathematics: A foundation for standards, curriculum, assessment, and instruction (research report #RR-68). Philadelphia: Consortium for Policy Research in Education. http://www.cpre.org/sites/default/files/researchreport/1220_learningtrajectoriesinmathcciireport.pdf. Accessed 12 Dec 2013.

  • de Beer, H., Gravemeijer, K., & van Eijck, M. (2015). Discrete and continuous reasoning about change in primary school classrooms. ZDM Mathematics Education. doi:10.1007/s11858-015-0684-5 (this issue).

    Google Scholar 

  • Dede, C. (2004). If design-based research is the answer, what is the question? Journal of the Learning Sciences, 13(1), 105–114.

    Article  Google Scholar 

  • Design Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.

    Article  Google Scholar 

  • diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Journal of the Learning Sciences, 13(1), 77–103.

    Article  Google Scholar 

  • Duckworth, E. (1996). The Having of Wonderful Ideas. New York: Teachers College Press.

    Google Scholar 

  • Edelson, D. C. (2002). Design research: What we learn when we engage in design. Journal of the Learning Sciences, 11(1), 105–122.

    Article  Google Scholar 

  • Freudenthal, H. (1968). Why to teach mathematics so as to be useful? Educational Studies in Mathematics, 1(1–2), 3–8.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordecht: Reidel.

    Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Kluwer.

    Google Scholar 

  • Fullan, M., & Pomfret, A. (1977). Research on curriculum and instruction implementation. Review of Educational Research, 47(2), 335–397.

    Article  Google Scholar 

  • Gould, S. J. (2004). The hedgehog, the fox, and the magister’s pox. London: Vintage.

    Google Scholar 

  • Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht: Cd-ß Press.

    Google Scholar 

  • Gravemeijer, K. (1998). Developmental research as a research method. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (An ICMI Study) (pp. 277–295). Dordrecht: Kluwer.

    Google Scholar 

  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

    Article  Google Scholar 

  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 45–85). London: Routledge.

    Google Scholar 

  • Gravemeijer, K. & Cobb, P. (2013). Design research from the learning design perspective. In: T. Plomp & N. Nieveen (Eds.), Educational design research Part A: An introduction (pp. 72–113), Enschede: SLO.

  • Gravemeijer, K., & Koster, K. (Eds.). (1988). Onderzoek, ontwikkeling en ontwikkelingsonderzoek. Utrecht: Vakgroep OW&OC.

    Google Scholar 

  • Gravemeijer, K., Lehrer, R., van Oers, B., & Verschaffel, L. (Eds.). (2002). Symbolizing, modeling and tool use in mathematics education. Dordrecht: Kluwer.

    Google Scholar 

  • Gresalfi, M. (2015). Designing to support critical engagement with statistics. ZDM Mathematics Education. doi:10.1007/s11858-015-0690-7 (this issue).

    Google Scholar 

  • Grouws, D. H., et al. (2010). COSMIC: Comparing options in secondary mathematics: investigating curriculum. http://cosmic.missouri.edu/. Accessed 16 Dec 2015.

  • Hoyles, C. & Noss, R. (2015). A computational lens on design research. ZDM Mathematics Education, 47(6) (this issue).

  • Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. Journal of Research in Mathematics Education, 35(2), 81–116.

    Article  Google Scholar 

  • Huntley, M. A. (2009). Brief report: Measuring curriculum implementation. Journal for Research in Mathematics Education, 40(4), 355–362.

    Google Scholar 

  • Janvier, C. (Ed.). (1987). Problems of representation in the learning of mathematics. Hillsdale: Erlbaum.

    Google Scholar 

  • Kamii, C. (1985). Young children reinvent arithmetic: Implications of Piaget’s theory. New York: Columbia University, Teachers College Press.

    Google Scholar 

  • Kaput, J. (1987). Representation and mathematics. In C. Janvier (Ed.), Problems of representation in the learning of mathematics (pp. 19–26). Hillsdale: Erlbaum.

    Google Scholar 

  • Kaput, J. (1999). Teaching and Learning a New Algebra. In E. Fennema & T. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133–155). Mahwah: Erlbaum.

    Google Scholar 

  • Kelly, A. (2003). Research as design. Educational Researcher, 32(1), 3–4.

    Article  Google Scholar 

  • Kelly, A. (2004). Design research in education: Yes, but is it methodological? Journal of the Learning Sciences, 13(1), 115–128.

    Article  Google Scholar 

  • Kelly, A. E., Lesh, R. A., & Baek, J. Y. (Eds.). (2008). Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching. New York: Routledge.

    Google Scholar 

  • Kwon, O. N., Bae, Y. G., & Oh, K. H. (2015). Design research on inquiry-based multivariable calculus: Focusing on students’ argumentation and instructional design. ZDM Mathematics Education, 47(6). doi:10.1007/s11858-015-0726-z (this issue).

  • Lehrer, R., Carpenter, S., Schauble, L., & Putz, A. (2000). Designing classrooms that support inquiry. In J. Minstrell & E. H. von Zee (Eds.), Inquiring in inquiry learning and teaching in science (pp. 80–99). Reston: American Association for the Advancement of Science.

    Google Scholar 

  • Lehrer, R., Giles, N., & Schauble, L. (2002). Children’s work with data. In R. Lehrer & L. Schauble (Eds.), Investigating real data in the classroom: expanding children’s understanding of math and science (pp. 1–26). New York: Teachers College Press.

    Google Scholar 

  • Lobato, J., Walters, C. D., Hohensee, C., Gruver, J., & Diamond, J. M. (2015). Leveraging failure in design research. ZDM Mathematics Education, 47(6). doi:10.1007/s11858-015-0695-2 (this issue).

    Google Scholar 

  • Maher, C. A. (2005). How students structure their investigations and learn mathematics: Insights from a long-term study. The Journal of Mathematical Behavior, 24(1), 1–14.

    Article  Google Scholar 

  • Margolinas, C., & Drijvers, P. (2015). Didactical engineering in France; an insider’s and an outsider’s view on its foundations, its practice and its impact. ZDM Mathematics Education. doi:10.1007/s11858-015-0698-z (this issue).

    Google Scholar 

  • Maxwell, J. A. (2004). Causal explanation, qualitative research, and scientific inquiry in education. Educational Researcher, 33(2), 3–11.

    Article  Google Scholar 

  • Merrill, M. D., Li, Z., & Jones, M. K. (1990). Limitations of first generation instructional design. Educational Technology, 30(1), 7–11.

    Google Scholar 

  • Minstrell, J. (2001). Facets of students’ thinking: Designing to cross the gap from research to standards-based practice. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Moll, L., Amanti, C., Neff, D., & González, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory into Practice, 31(2), 132–141.

    Article  Google Scholar 

  • Nieveen, N., McKenney, S., & Van den Akker, J. (2006). Educational design research: the value of variety. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 151–158). London: Routledge.

    Google Scholar 

  • Philipps, D. C., & Dolle, J. R. (2006). From Plato to brown and beyond: Theory, practice, and the promise of design experiments. In L. Verschaffel, F. Dochy, M. Boekaerts, & S. Vosniadou (Eds.), Instructional psychology: Past, present and future trends (pp. 277–292). Oxford/Amsterdam: Elsevier.

    Google Scholar 

  • Plomp, T., & Nieveen, N. (Eds.). (2013). Educational design research. Enschede: SLO.

    Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Prediger, S., & Bikner-Ahsbahs, A. (2010). Networking of theories—An approach for exploiting the diversity of theoretical approaches. In B. Sriraman & L. English (Eds.), Theories of mathematics education (pp. 483–506). Berlin: Springer.

    Google Scholar 

  • Prediger, S., & Krägeloh, N. (2015). Low achieving eighth graders learn to crack word problems: a design research project for aligning a strategic scaffolding tool to students’ mental processes. ZDM Mathematics Education, 47(6). doi:10.1007/s11858-015-0702-7. (this issue).

    Google Scholar 

  • Prediger, S., Link, M., Hinz, R., Hußmann, S., Thiele, J., & Ralle, B. (2012). Lehr-Lernprozesse initiieren und erforschen—fachdidaktische entwicklungsforschung im dortmunder modell [initiating and researching teaching learning processes—didactical design research in the dortmund model]. Der mathematische und naturwissenschaftliche Unterricht, 65(8), 452–457.

    Google Scholar 

  • Prediger, S., & Schnell, S. (2014). Investigating the dynamics of stochastic learning processes: A didactical research perspective, its methodological and theoretical framework, illustrated for the case of the short term-long term distinction. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: presenting plural perspectives (pp. 533–558). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Prediger, S., & Zwetzschler, L. (2013). Topic-specific design research with a focus on learning processes: The case of understanding algebraic equivalence in grade 8. In T. Plomp & N. Nieveen (Eds.), Educational design research: illustrative cases (pp. 407–424). Enschede: SLO, Netherlands Institute for Curriculum Development.

    Google Scholar 

  • Rasmussen, C. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior, 20(1), 55–87.

    Article  Google Scholar 

  • Reeves, T. C. (2000). Socially responsible educational technology research. Educational Technology, 40(6), 19–28.

    Google Scholar 

  • Research Advisory Committee of the National Council of Teachers of Mathematics. (1996). Justification and reform. Journal for Research in Mathematics Education, 27(5), 516–520.

    Article  Google Scholar 

  • Romberg, T. A. (1973). Development research: An overview of how development-based research works in practice. wisconsin research and development center for cognitive learning. Madison: University of Wisconsin-Madison.

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2002). Building Blocks for young children’s mathematical development. Journal of Educational Computing Research, 27(1–2), 93–109.

    Article  Google Scholar 

  • Schoenfeld, A. (2007). Methods. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 69–107). Charlotte: Information Age/NCTM.

    Google Scholar 

  • Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston: Houghton Mifflin.

    Google Scholar 

  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.

    Article  Google Scholar 

  • Simon, M. A. (2000). Research on the development of mathematics teachers: The teacher development experiment. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 335–359). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Slavin, R. E. (2002). Evidence-based education policies: Transforming educational practice and research. Educational researcher, 31(7), 15–21.

    Article  Google Scholar 

  • Smaling, A. (1992). Varieties of methodological intersubjectivity—the relations with qualitative and quantitative research, and with objectivity. Quality & Quantity, 26, 169–180.

    Article  Google Scholar 

  • Steffe, L. P. (1983). The teaching experiment methodology in a constructivist research program. In M. Zweng, T. Green, J. Kilpatrick, H. Pollak, & M. Suydam (Eds.), Proceedings of the fourth international congress on mathematical education (pp. 469–471). Boston: Birkhäuser.

    Google Scholar 

  • Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177–194). Boston: Kluwer.

    Chapter  Google Scholar 

  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267–307). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Stephan, M. L. (2015). Conducting classroom design research with teachers. ZDM Mathematics Education,  47(6). doi:10.1007/s11858-014-0651-6. (this issue).

    Google Scholar 

  • Stokes, D. (1997). Pasteur’s quadrant: Basic science and technological innovation. Washington DC: Brooking Institution Press.

    Google Scholar 

  • Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Tarr, J. E., Grouws, D. A., Chávez, Ó., & Soria, V. M. (2013). The effects of content organization and curriculum implementation on students’ mathematics learning in second-year high school courses. Journal for Research in Mathematics Education, 44(4), 683–729.

    Article  Google Scholar 

  • Thompson, P. W. (1979). The constructivist teaching experiment in mathematics education research. Presentation to the annual meeting of the national council of teachers of mathematics (NCTM), Boston, MA.

  • Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics instruction—the wiskobas project. Dordrecht: Reidel.

    Book  Google Scholar 

  • Usiskin, Z. (1986). Translating grades 7–12 mathematics recommendations into reality. Educational Leadership, 44(4), 30–35.

    Google Scholar 

  • van den Akker, J. (1999). Principles and methods of development research. In J. van Akker, R. M. Branch, K. Gustafson, N. Nieveen, & T. Plomp (Eds.), Design approaches and tools in education and training (pp. 1–14). Boston: Kluwer.

    Chapter  Google Scholar 

  • van den Akker, J. (2013). Curricular development research as a specimen of educational design research. In T. Plomp & N. Nieveen (Eds.), Educational design research: illustrative cases (pp. 52–71). Enschede: SLO, Netherlands Institute for Curriculum Development.

    Google Scholar 

  • van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (Eds.). (2006). Educational design research. London: Routledge.

    Google Scholar 

  • Vergnaud, G. (1996). The theory of conceptual fields. In L. Steffe & P. Nesher (Eds.), Theories of mathematical learning (pp. 219–239). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Voigt, J. (1985). Patterns and routines in classroom interaction. Researches en Didactique de Mathématiques, 6, 69–118.

    Google Scholar 

  • Watson, A. & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design: ICMI study (vol. 22). New York: Springer (in press).

  • Wittmann, E. C. (1995). Mathematics education as a “design science”. Educational Studies in Mathematics, 29(4), 355–379.

    Article  Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Prediger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prediger, S., Gravemeijer, K. & Confrey, J. Design research with a focus on learning processes: an overview on achievements and challenges. ZDM Mathematics Education 47, 877–891 (2015). https://doi.org/10.1007/s11858-015-0722-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0722-3

Keywords

Navigation