Skip to main content
Log in

Reinventing learning: a design-research odyssey

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Design research is a broad, practice-based approach to investigating problems of education. This approach can catalyze the development of learning theory by fostering opportunities for transformational change in scholars’ interpretation of instructional interactions. Surveying a succession of design-research projects, I explain how challenges in understanding students’ behaviors promoted my own recapitulation of a historical evolution in educators’ conceptualizations of learning—Romantic, Progressivist, and Synthetic (Schön, Intuitive thinking? A metaphor underlying some ideas of educational reform (working paper 8). Division for Study and Research in Education, MIT, Cambridge, 1981)—and beyond to a proposed Systemic view. In reflection, I consider methodological adaptations to design-research practice that may enhance its contributions in accord with its objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamson, D. (2009). Orchestrating semiotic leaps from tacit to cultural quantitative reasoning—the case of anticipating experimental outcomes of a quasi-binomial random generator. Cognition and Instruction, 27(3), 175–224.

    Article  Google Scholar 

  • Abrahamson, D. (2012a). Seeing chance: Perceptual reasoning as an epistemic resource for grounding compound event spaces. ZDM - The International Journal on Mathematics Education, 44(7), 869–881.

    Article  Google Scholar 

  • Abrahamson, D. (2012b). Rethinking intensive quantities via guided mediated abduction. Journal of the Learning Sciences, 21(4), 626–649.

    Article  Google Scholar 

  • Abrahamson, D. (2012c). Discovery reconceived: Product before process. For the Learning of Mathematics, 32(1), 8–15.

    Google Scholar 

  • Abrahamson, D. (2014). Building educational activities for understanding: An elaboration on the embodied-design framework and its epistemic grounds. International Journal of Child-Computer Interaction. doi:10.1016/j.ijcci.2014.07.002.

  • Abrahamson, D., & Sánchez-García, R. (2014). Learning is moving in new ways: An ecological dynamics view on learning across the disciplines. Paper presented at the “Embodied cognition in education” symposium (A. Bakker, M.F. van der Schaaf, S. Shayan, & P. Leseman, Chairs), Freudenthal Institute for Science and Mathematics Education, University of Utrecht, The Netherlands, June 23, 2014.

  • Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying sensorimotor enactment in fields of promoted action. In D. Reid, L. Brown, A. Coles, & M.-D. Lozano (Eds.), Enactivist methodology in mathematics education research (special issue). ZDM - The International Journal on Mathematics Education. doi:10.1007/s11858-014-0620-0.

  • Abrahamson, D., Trninic, D., Gutiérrez, J. F., Huth, J., & Lee, R. G. (2011). Hooks and shifts: A dialectical study of mediated discovery. Technology, Knowledge, and Learning, 16(1), 55–85.

    Google Scholar 

  • Abrahamson, D., Gutiérrez, J. F., Charoenying, T., Negrete, A. G., & Bumbacher, E. (2012). Fostering hooks and shifts: Tutorial tactics for guided mathematical discovery. Technology, Knowledge, and Learning, 17(1–2), 61–86. doi:10.1007/s10758-012-9192-7.

    Article  Google Scholar 

  • Abrahamson, D., Chase, K., Kumar, V., & Jain, R. (2014a). Leveling transparency via situated, intermediary learning objectives. In J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A. S. Jurow, K. O’Connor, T. Lee, & L. D’Amico (Eds.), Proceedings of “Learning and Becoming in Practice”, the 11 th International Conference of the Learning Sciences (ICLS) 2014 (Vol. 1, pp. 23–30). Boulder: International Society of the Learning Sciences.

    Google Scholar 

  • Abrahamson, D., Lee, R. G., Negrete, A. G., & Gutiérrez, J. F. (2014b). Coordinating visualizations of polysemous action: Values added for grounding proportion. ZDM - The International Journal on Mathematics Education, 46(1), 79–93.

    Article  Google Scholar 

  • Allen, J. W. P., & Bickhard, M. H. (2013). Stepping off the pendulum: Why only an action-based approach can transcend the nativist–empiricist debate. Cognitive Development, 28(2), 96–133.

    Article  Google Scholar 

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241.

    Article  Google Scholar 

  • Bamberger, J. (1999). Action knowledge and symbolic knowledge: The computer as mediator. In D. Schön, B. Sanyal, & W. Mitchell (Eds.), High technology and low Income communities (pp. 235–262). Cambridge: MIT Press.

    Google Scholar 

  • Bartolini Bussi, M.G., & Mariotti, M.A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L.D. English, M.G. Bartolini Bussi, G.A. Jones, R. Lesh & D. Tirosh (Eds.), Handbook of international research in mathematics education, 2nd revised edition (pp. 720–749). Mahwah: Lawrence Erlbaum Associates.

  • Barwell, R. (2009). Researchers’ descriptions and the construction of mathematical thinking. Educational Studies in Mathematics, 72(2), 255–269.

    Article  Google Scholar 

  • Bereiter, C. (1985). Towards the solution of the learning paradox. Review of Educational Research, 55(2), 210–226.

    Article  Google Scholar 

  • Bernstein, N. A. (1996). Dexterity and its development. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Borovcnik, M., & Bentz, H.-J. (1991). Empirical research in understanding probability. In R. Kapadia & M. Borovcnik (Eds.), Chance encounters: Probability in education (pp. 73–105). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics (N. Balacheff, M. Cooper, R. Sutherland & V. Warfield, Trans.). Boston: Kluwer Academic Publishers.

  • Bruner, J. S. (1966). Toward a theory of instruction. Cambridge: Belknap Press of Harvard University.

    Google Scholar 

  • Chase, K., & Abrahamson, D. (2013). Rethinking transparency: Constructing meaning in a physical and digital design for algebra. In J.P. Hourcade, E.A. Miller & A. Egeland (Eds.), Proceedings of the 12 th Annual Interaction Design and Children Conference (IDC 2013) (Vol. “Short Papers”, pp. 475–478). New York: The New School & Sesame Workshop.

  • Chi, M. T. H. (2013). Two kinds and four sub-types of misconceived knowledge, ways to change it and the learning outcomes. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 49–70). New York: Routledge Press (Taylor Francis Group).

    Google Scholar 

  • Chow, J. Y., Davids, K., Button, C., Shuttleworth, R., Renshaw, I., & Araújo, D. (2007). The role of nonlinear pedagogy in physical education. Review of Educational Research, 77(3), 251–278.

    Article  Google Scholar 

  • Clancey, W. J. (2008). Scientific antecedents of situated cognition. In P. Robbins & M. Aydede (Eds.), Cambridge handbook of situated cognition (pp. 11–34). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Cole, M. (2009). The perils of translation: A first step in reconsidering Vygotsky’s theory of development in relation to formal education. Mind, Culture & Activity, 16, 191–195.

    Article  Google Scholar 

  • Cole, M., & Wertsch, J. V. (1996). Beyond the individual–social antinomy in discussions of Piaget and Vygotsky. Human Development, 39(5), 250–256.

    Article  Google Scholar 

  • Collins, A. (1990). Toward a design science of educationTechnical Report No. 1. New York: Center for Technology in Education.

  • Confrey, J. (2005). The evolution of design studies as methodology. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 135–151). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Davis, G. E. (Ed.). (2003). Fractions, ratio, and proportional reasoning (special issue). The Journal of Mathematical Behavior, 22(2&3).

  • de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 4809–4813.

    Article  Google Scholar 

  • Denison, S., & Xu, F. (2014). The origins of probabilistic inference in human infants. Cognition, 130(3), 335–347.

    Article  Google Scholar 

  • Depraz, N., Varela, F. J., & Vermersch, P. (2003). On becoming aware: A pragmatics of experiencing. New York: John Benjamins Publishing.

    Book  Google Scholar 

  • Dewey, J. (1938). Experience & education. NY: Collier MacMillan.

    Google Scholar 

  • Dickinson, P., & Eade, R. (2004). Using the number line to investigate solving linear equations. For the Learning of Mathematics, 24(2), 41–47.

    Google Scholar 

  • diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. The Journal of the Learning Sciences, 13(1), 77–103.

    Article  Google Scholar 

  • Fischer, H. R. (2001). Abductive reasoning as a way of world making. Foundations of Science, 6(4), 361–383.

    Article  Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Froebel, F. (2005). The education of man (W.N. Hailmann, Trans.). New York: Dover Publications. (Original work published 1885).

  • Gibbs, R. W. (2011). Evaluating Conceptual Metaphor theory. Discourse Processes, 48(8), 529–562.

    Article  Google Scholar 

  • Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Goodwin, C. (1994). Professional vision. American Anthropologist, 96(3), 603–633.

    Article  Google Scholar 

  • Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 5–26.

    Article  Google Scholar 

  • Guba, E. G., & Lincoln, Y. S. (1998). Competing paradigms in qualitative research. In N. Denzin & Y. Lincoln (Eds.), The landscape of qualitative research: Theories and issues (pp. 195–220). Thousand Oaks: SAGE.

    Google Scholar 

  • Jaworski, B. (2012). Mathematics teaching development as a human practice: Identifying and drawing the threads. ZDM - The International Journal on Mathematics Education, 44(5), 613–625. doi:10.1007/s11858-012-0437-7.

    Article  Google Scholar 

  • Job, P., & Schneider, M. (2014). Empirical positivism, an epistemological obstacle in the learning of calculus. ZDM - The International Journal on Mathematics Education, 46(4), 635–646.

    Article  Google Scholar 

  • Jones, G. A., Langrall, C. W., & Mooney, E. S. (2007). Research in probability: Responding to classroom realities. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 909–955). Charlotte: Information Age Publishing.

    Google Scholar 

  • Kahneman, D. (2003). A perspective on judgement and choice. American Psychologist, 58(9), 697–720.

    Article  Google Scholar 

  • Kamii, C. K., & Dominick, A. (1998). The harmful effects of algorithms in grades 1–4. In L. J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms in school mathematics, 1998 yearbook (pp. 130–140). Reston: NCTM.

    Google Scholar 

  • Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008–1022.

    Article  Google Scholar 

  • Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Greenwich: Information Age Publishing.

    Google Scholar 

  • Kirsh, D. (2013). Embodied cognition and the magical future of interaction design. ACM Transactions on HumanComputer Interaction, 20(1), Article #3 (30 pages).

  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educational Researcher, 42(8), 445–452.

    Article  Google Scholar 

  • Lobato, J., Walters, C.D., Diamond, J.M., Gruver, J., & Hohensee, C. (2015). Capitalizing on failures in design-based research. ZDM - The International Journal on Mathematics Education, 47(6).

  • Martin, T. (2009). A theory of physically distributed learning: How external environments and internal states interact in mathematics learning. Child Development Perspectives, 3(3), 140–144. doi:10.1111/j.1750-8606.2009.00094.x.

    Article  Google Scholar 

  • Mauks-Koepke, K.P., Buchanan, K., Relaford-Doyle, J., Souchkova, D., & Abrahamson, D. (2009). The double-edged sword of constructivist design. Paper presented at the annual meeting of the American Educational Research Association, San Diego, April 13–17.

  • Melser, D. (2004). The act of thinking. Cambridge: MIT Press.

    Google Scholar 

  • Merleau-Ponty, M. (2005). Phenomenology of perception (C. Smith, Trans.). New York: Routledge. (Original work published 1945).

  • Nathan, M. J. (2012). Rethinking formalisms in formal education. Educational Psychologist, 47(2), 125–148.

    Article  Google Scholar 

  • Negrete, A.G., Lee, R.G., & Abrahamson, D. (2013). Facilitating discovery learning in the tablet era: Rethinking activity sequences vis-à-vis digital practices. In M. Martinez & A. Castro Superfine (Eds.), “Broadening Perspectives on Mathematics Thinking and Learning”Proceedings of the 35th Annual Meeting of the North-American Chapter of the International Group for the Psychology of Mathematics Education (PME-NA 35) (Vol. 10: “Technology” pp. 1205). Chicago: University of Illinois at Chicago.

  • Newell, K. M. (1986). Constraints on the development of coordination. In M. G. Wade & H. T. A. Whiting (Eds.), Motor development in children: Aspects of coordination and control (pp. 341–361). Amsterdam: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Newman, D., Griffin, P., & Cole, M. (1989). The construction zone: Working for cognitive change in school. New York: Cambridge University Press.

    Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

    Google Scholar 

  • Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1–12). Norwood: Ablex Publishing.

    Google Scholar 

  • Piaget, J. (1970). Structuralism. New York: Basic Books.

    Google Scholar 

  • Piaget, J. (1971). Biology and knowledge: An essay on the relations between organic regulations and cognitive processes. Chicago: The University of Chicago Press.

    Google Scholar 

  • Pirie, S. E. B., & Kieren, T. E. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it? Educational Studies in Mathematics, 26, 165–190.

    Article  Google Scholar 

  • Radford, L. (2014). Towards an embodied, cultural, and material conception of mathematics cognition. ZDM - The International Journal on Mathematics Education, 46(3), 349–361.

    Article  Google Scholar 

  • Schiphorst, T. (2011). Self-evidence: Applying somatic connoisseurship to experience design. In G. Fitzpatrick, C. Gutwin, B. Begole, W.A. Kellogg & D. Tan (Eds.), Proceedings of the annual meeting of The Association for Computer Machinery Special Interest Group on Computer Human Interaction: “Human Factors in Computing Systems” (CHI 2011), Vancouver, May 712, 2011 (Vol. “Session: Sex & Bodies”, pp. 145–160). New York: ACM Press.

  • Schön, D.A. (1981). Intuitive thinking? A metaphor underlying some ideas of educational reform (working paper 8). Unpublished manuscript. Cambridge: Division for Study and Research in Education, MIT.

  • Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.

    Google Scholar 

  • Sfard, A. (2002). The interplay of intimations and implementations: Generating new discourse with new symbolic tools. Journal of the Learning Sciences, 11(2&3), 319–357.

    Article  Google Scholar 

  • Smith, J. P., DiSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163.

    Article  Google Scholar 

  • Spackman, J. S., & Yanchar, S. C. (2013). Embodied cognition, representationalism, and mechanism: A review and analysis. Journal for the Theory of Social Behaviour, 44(1), 46–79.

    Article  Google Scholar 

  • Streefland, L. (1993). The design of a mathematics course: A theoretical reflection. Educational Studies in Mathematics, 25(1), 109–135.

    Article  Google Scholar 

  • Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning trajectory based instruction. Educational Researcher, 41(5), 147–156.

    Article  Google Scholar 

  • Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press.

    Google Scholar 

  • Thompson, P. W. (2013). In the absence of meaning…. In K. Leatham (Ed.), Vital directions for mathematics education research (pp. 57–94). New York: Springer.

    Chapter  Google Scholar 

  • Thompson, E., & Stapleton, M. (2009). Making sense of sense-making: Reflections on enactive and extended mind theories. Topoi, 28(1), 23–30.

    Article  Google Scholar 

  • Tracey, M., Hutchinson, A., & Grzebyk, T. (2014). Instructional designers as reflective practitioners: Developing professional identity through reflection. Educational Technology Research and Development. doi:10.1007/s11423-014-9334-9.

  • Turkle, S., & Papert, S. (1991). Epistemological pluralism and the revaluation of the concrete. In I. Harel & S. Papert (Eds.), Constructionism (pp. 161–192). Norwood: Ablex Publishing.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.

    Article  Google Scholar 

  • Vagle, M. D. (2010). Re-framing Schön’s call for a phenomenology of practice: A post-intentional approach. Reflective Practice, 11(3), 393–407.

    Article  Google Scholar 

  • van Rompay, T., Hekkert, P., & Muller, W. (2005). The bodily basis of product experience. Design Studies, 26(4), 359–377.

    Article  Google Scholar 

  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.

    Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.

    Article  Google Scholar 

  • von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 3–18). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Vygotsky, L. (1926/1997). Educational psychology (R. H. Silverman, Trans.). Boca Raton, FL: CRC Press LLC.

  • White, T. (2008). Debugging an artifact, instrumenting a bug: Dialectics of instrumentation and design in technology-rich learning environments. International Journal of Computers for Mathematical Learning, 13(1), 1–26.

    Article  Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

    Article  Google Scholar 

  • Yanchar, S. C. (2011). Participational agency. Review of General Psychology, 15(3), 277–287.

    Article  Google Scholar 

Download references

Acknowledgements

For their highly constructive comments on earlier drafts, I wish to thank Dragan Trninic and Maria Droujkova as well as the ZDM Editor-in-Chief and three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dor Abrahamson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahamson, D. Reinventing learning: a design-research odyssey. ZDM Mathematics Education 47, 1013–1026 (2015). https://doi.org/10.1007/s11858-014-0646-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-014-0646-3

Keywords

Navigation